Advertisement

Regeneration in Stellate Echinoderms: Crinoidea, Asteroidea and Ophiuroidea

  • Yousra Ben Khadra
  • Michela Sugni
  • Cinzia Ferrario
  • Francesco Bonasoro
  • Paola Oliveri
  • Pedro Martinez
  • Maria Daniela Candia Carnevali
Chapter
Part of the Results and Problems in Cell Differentiation book series (RESULTS, volume 65)

Abstract

Reparative regeneration is defined as the replacement of lost adult body parts and is a phenomenon widespread yet highly variable among animals. This raises the question of which key cellular and molecular mechanisms have to be implemented in order to efficiently and correctly replace entire body parts in any animal. To address this question, different studies using an integrated cellular and functional genomic approach to study regeneration in stellate echinoderms (crinoids, asteroids and ophiuroids) had been carried out over the last few years. The phylum Echinodermata is recognized for the striking regeneration potential shown by the members of its different clades. Indeed, stellate echinoderms are considered among the most useful and tractable experimental models for carrying comprehensive studies focused on ecological, developmental and evolutionary aspects. Moreover, most of them are tractable in the laboratory and, thus, should allow us to understand the underlying mechanisms, cellular and molecular, which are involved. Here, a comprehensive analysis of the cellular/histological components of the regenerative process in crinoids, asteroids and ophiuroids is described and compared. However, though this knowledge provided us with some clear insights into the global distribution of cell types at different times, it did not explain us how the recruited cells are specified (and from which precursors) over time and where are they located in the animal. The precise answer to these queries needs the incorporation of molecular approaches, both descriptive and functional. Yet, the molecular studies in stellate echinoderms are still limited to characterization of some gene families and protein factors involved in arm regeneration but, at present, have not shed light on most of the basic mechanisms. In this context, further studies are needed specifically to understand the role of regulatory factors and their spatio-temporal deployment in the growing arms. A focus on developing functional tools over the next few years should be of fundamental importance.

References

  1. Agata K, Tanaka T, Kobayash C, Kato K, Saitoh Y (2003) Intercalary regeneration in planarians. Dev Dyn 226:308–316PubMedCrossRefPubMedCentralGoogle Scholar
  2. Agata K, Saitoh Y, Nakajima E (2007) Unifying principles of regeneration I: epimorphosis versus morphallaxis. Dev Growth Differ 49:73–78PubMedCrossRefPubMedCentralGoogle Scholar
  3. Ariza L, Carmona R, Caňete A, Cano E, Muňoz-Chápuli R (2016) Coelomic epithelium derived-cells in visceral morphogenesis. Dev Dyn 245:307–322PubMedCrossRefPubMedCentralGoogle Scholar
  4. Aronson RB (1991) Predation, physical disturbance, and sublethal arm damage in ophiuroids: a Jurassic-Recent comparison. Mar Ecol Prog Ser 74(1):91–97CrossRefGoogle Scholar
  5. Bannister R, McGonnell IM, Graham A, Thorndyke MC, Beesley PW (2005) Afuni, a novel transforming growth factor-beta gene is involved in arm regeneration by the brittle star Amphiura filiformis. Dev Genes Evol 215(8):393–401.  https://doi.org/10.1007/s00427-005-0487-8CrossRefPubMedPubMedCentralGoogle Scholar
  6. Bannister R, McGonnell IM, Graham A, Thorndyke MC, Beesley PW (2008) Coelomic expression of a novel bone morphogenetic protein in regenerating arms of the brittle star Amphiura filiformis. Dev Genes Evol 218:33–38PubMedCrossRefPubMedCentralGoogle Scholar
  7. Baumiller TK, Gahn FJ (2004) Testing predator-driven evolution with Paleozoic crinoid arm regeneration. Science 305(5689):1453–1455.  https://doi.org/10.1126/science.1101009CrossRefPubMedPubMedCentralGoogle Scholar
  8. Ben Khadra Y, Said K, Thorndyke MC, Martinez P (2014) Homeobox genes expressed during echinoderm arm regeneration. Biochem Genet 52:166–180PubMedCrossRefPubMedCentralGoogle Scholar
  9. Ben Khadra Y, Ferrario C, Di Benedetto C, Said K, Bonasoro F, Candia Carnevali MD, Sugni M (2015a) Wound repair during arm regeneration in the red starfish Echinaster sepositus. Wound Repair Regen 23:611–622PubMedCrossRefPubMedCentralGoogle Scholar
  10. Ben Khadra Y, Ferrario C, Di Benedetto C, Said K, Bonasoro F, Candia Carnevali MD, Sugni M (2015b) Re-growth, morphogenesis, and differentiation during starfish arm regeneration. Wound Repair Regen 23:623–634PubMedCrossRefPubMedCentralGoogle Scholar
  11. Ben Khadra Y, Sugni M, Ferrario C, Bonasoro F, Varela Coelho A, Martinez P, Candia Carnevali MD (2017) An integrated view of asteroid regeneration: tissues, cells and molecules. Cell Tissue Res.  https://doi.org/10.1007/s00441-017-2589-9
  12. Biressi A, Ting Z, Dupont S, Dahlberg C, Di Benedetto C, Bonasoro F, Thorndyke M, Candia Carnevali MD (2010) Wound-healing and arm regeneration in Ophioderma longicaudum and Amphiura filiformis (Ophiuroidea, Echinodermata): comparative morphogenesis and histogenesis. Zoomorphology 129:1–19CrossRefGoogle Scholar
  13. Blowes LM, Egertová M, Liu Y, Davis GR, Terrill NJ, Gupta HS, Elphick MR (2017) Body wall structure in the starfish Asterias rubens. J Anat 231(3):325–341. Version of Record online: 16 JUL 2017.  https://doi.org/10.1111/joa.12646
  14. Bonasoro F, Candia Carnevali MD, Moss C, Thorndyke MC (1998) Epimorphic versus morphallactic mechanisms in arm regeneration of crinoids and asteroids: pattern of cell proliferation differentiation and cell lineage. In: Mooi R, Telford M (eds) Echinoderms: San Francisco. Balkema, Rotterdam, pp 13–18Google Scholar
  15. Bourgoin A, Guillou M (1994) Arm regeneration in two populations of Acrocnida brachiata (Montagu) (Echinodermata: Ophiuroidea) in Douarnenez Bay, (Brittany: France): An ecological significance. J Exp Mar Biol Ecol 184(1):123–139CrossRefGoogle Scholar
  16. Brockes JP, Kumar A (2008) Comparative aspects of animal regeneration. Annu Rev Cell Biol 24(1):525–549CrossRefGoogle Scholar
  17. Burns G, Ortega-Martinez O, Thorndyke MC, Peck LS, Dupont S, Clark MS (2011) Dynamic gene expression profiles during arm regeneration in the brittle star Amphiura filiformis. J Exp Mar Biol Ecol 407(2):315–322.  https://doi.org/10.1016/j.jembe.2011.06.032CrossRefGoogle Scholar
  18. Burns G, Ortega-Martinez O, Dupont S, Thorndyke MC, Peck LS, Clark MS (2012) Intrinsic gene expression during regeneration in arm explants of Amphiura filiformis. J Exp Mar Biol Ecol 413(C):106–112.  https://doi.org/10.1016/j.jembe.2011.12.001CrossRefGoogle Scholar
  19. Candia Carnevali MD (2006) Regeneration in echinoderms: repair, regrowth and cloning. Invert Surviv J 3:64–76Google Scholar
  20. Candia Carnevali MD, Bonasoro F (1995) Arm regeneration and pattern formation in crinoids. In: Smith E, Campbell AC (eds) Echinoderm research. Balkema, Rotterdam, pp 245–253Google Scholar
  21. Candia Carnevali MD, Bonasoro F (2001) Microscopic overview of crinoid regeneration. Microsc Res Tech 55:403–426PubMedCrossRefPubMedCentralGoogle Scholar
  22. Candia Carnevali MD, Burighel P (2010) Regeneration in echinoderms and ascidians. In: Encyclopedia of life sciences (eLS). Wiley, Chichester.  https://doi.org/10.1002/9780470015902.a0022102CrossRefGoogle Scholar
  23. Candia Carnevali MD, Bruno L, Denis Donini S, Melone G (1989) Regeneration and morphogenesis in the feather star arm. In: Kiortsis V, Koussoulakos S, Wallace H (eds) Recent trends in regeneration research, NATO ASI Series, vol 172, pp 447–460CrossRefGoogle Scholar
  24. Candia Carnevali MD, Lucca E, Bonasoro F (1993) Mechanism of arm regeneration in the feather star Antedon mediterranea: healing of wound and early stages of development. J Exp Zool 267:299–317CrossRefGoogle Scholar
  25. Candia Carnevali MD, Bonasoro F, Lucca E, Thorndyke MC (1995a) Pattern of cell proliferation in the early stages of arm regeneration in the feather star Antedon mediterranea. J Exp Zool 272:464–474CrossRefGoogle Scholar
  26. Candia Carnevali MD, Bonasoro F, Wilkie IC (1995b) Coelom and “tinkering” in echinoids: morphofunctional adaptations of the lantern coelom. In: Lanzavecchia G, Valvassori R, Candia Carnevali MD (eds) Body cavities: function and phylogeny. Mucchi, Modena, pp 135–165Google Scholar
  27. Candia Carnevali MD, Bonasoro F, Invernizzi R, Lucca E, Welsch U, Thorndyke MC (1996) Tissue distribution of monoamine neurotransmitters in normal and regenerating arms of the feather star Antedon mediterranea. Cell Tissue Res 285:341–352CrossRefGoogle Scholar
  28. Candia Carnevali MD, Bonasoro F, Biale A (1997) Pattern of bromodeoxyuridine incorporation in the advanced stages of arm regeneration in the feather star Antedon mediterranea. Cell Tissue Res 289:363–374PubMedCrossRefPubMedCentralGoogle Scholar
  29. Candia Carnevali MD, Bonasoro F, Patruno M, Thorndyke MC (1998) Cellular and molecular mechanisms of arm regeneration in crinoid echinoderms: the potential of arm explants. Dev Genes Evol 208:421–430PubMedCrossRefPubMedCentralGoogle Scholar
  30. Candia Carnevali MD, Bonasoro F, Trezzi M, Giardina A (1999) Nerve-dependent myogenesis in arm regeneration of Antedon mediterranea. In: Candia Carnevali MD, Bonasoro F (eds) Echinoderm research 1998. Balkema, Rotterdam, pp 139–143Google Scholar
  31. Candia Carnevali MD, Bonasoro F, Patruno M, Thorndyke MC, Galassi S (2001a) PCB exposure and regeneration in crinoids (Echinodermata). Mar Ecol Progr Ser 215:155–167CrossRefGoogle Scholar
  32. Candia Carnevali MD, Galassi S, Bonasoro F, Patruno M, Thorndyke MC (2001b) Regenerative response and endocrine disrupters in crinoid echinoderms: arm regeneration in Antedon mediterranea after experimental exposure to polychlorinated biphenyls. J Exp Biol 204:835–842PubMedPubMedCentralGoogle Scholar
  33. Candia Carnevali MD, Bonasoro F, Thorndyke MC, Patruno M (2001c) Role of the nervous system in echinoderm regeneration. In: Barker M (ed) Echinoderms 2000. Balkema, Rotterdam, pp 5–20Google Scholar
  34. Candia Carnevali MD, Bonasoro F, Ferreri P, Galassi S (2003) Regenerative potential and effects of exposure to pseudo-estrogenic contaminants (4-nonylphenol) in the crinoid Antedon mediterranea. In: Féral JP, David B (eds) Echinoderms research 2001. Balkema, Lisse, pp 201–207Google Scholar
  35. Cannon JT, Swalla BJ, Halanych KM (2013) Hemichordate molecular phylogeny reveals a novel cold-water clade of harrimaniid acorn worms. Biol Bull 225(3):194–204PubMedCrossRefPubMedCentralGoogle Scholar
  36. Chen D, Zhao M, Mundy GR (2004) bone morphogenetic proteins. Growth Factors 22(4):233–241PubMedCrossRefPubMedCentralGoogle Scholar
  37. Clark MS, Souster T (2012) Slow arm regeneration in the Antarctic brittle star Ophiura crassa (Echinodermata, Ophiuroidea). Aquat Biol 16:105–113CrossRefGoogle Scholar
  38. Clark MS, Dupont S, Rossetti H, Burns G, Thorndyke MC, Peck LS (2007) Delayed arm regeneration in the Antarctic brittle star Ophionotus victoriae. Aquat Biol 1:45–53CrossRefGoogle Scholar
  39. Clements LAJ, Bell SS, Kurdziel JP (1994) Abundance and arm loss of the infaunal brittlestar Ophiophragmus filograneus (Echinodermata: Ophiuroidea), with an experimental determination of regeneration rates in natural and planted seagrass beds. Mar Biol 121(1):97–104CrossRefGoogle Scholar
  40. Clevers H, Loh KM, Nusse R (2014) An integral program for tissue renewal and regeneration: Wnt signalling and stem cell control. Science 346(6205):1248012.  https://doi.org/10.1126/science.1248012CrossRefPubMedPubMedCentralGoogle Scholar
  41. Cobb JLS (1995) The nervous systems of Echinodermata: Recent results and new approaches. In: Breidbach O, Kutsch W (eds) The nervous systems of invertebrates: an evolutionary and comparative approach. Birkhäuser, Basel, pp 407–424CrossRefGoogle Scholar
  42. Czarkwiani A, Dylus DV, Oliveri P (2013) Expression of skeletogenic genes during arm regeneration in the brittle star Amphiura filiformis. Gene Expr Patterns 13:464–472PubMedPubMedCentralCrossRefGoogle Scholar
  43. Czarkwiani A, Ferrario C, Dylus DV, Sugni M, Oliveri P (2016) Skeletal regeneration in the brittle star Amphiura filiformis. Front Zool 13:18PubMedPubMedCentralCrossRefGoogle Scholar
  44. Dawydoff C (1901) Beiträge zur Kenntnis der Regenerationserscheinungen bei den Ophiuren. Z Wiss Zool 69:202–234Google Scholar
  45. Di Benedetto C, Parma L, Barbaglio A, Sugni M, Bonasoro F, Candia Carnevali MD (2014) Echinoderm regeneration: an in vitro approach using the crinoid Antedon mediterranea. Cell Tissue Res 358(1):189–201.  https://doi.org/10.1007/s00441-014-1915-8CrossRefPubMedPubMedCentralGoogle Scholar
  46. Di Giorgio G, Rubilar T, Brogger MI (2015) Histological analysis after arm tip amputation in the brittle star Ophioplocus januarii (Echinodermata: Ophiuroidea). Rev Biol Trop (Int J Trop Biol) 63(2):297–308 ISSN: 0034-7744Google Scholar
  47. Dinsmore CE (2001) Regeneration: principles. eLS.  https://doi.org/10.1038/npg.els.0001112
  48. Dinsmore CE, Mescher AL (1998) The role of the nervous system in regeneration. In: Ferretti P, Géraudie J (eds) Cellular and molecular basis of regeneration: from invertebrates to humans. Wiley, New York, pp 79–108Google Scholar
  49. Dolmatov IY (1993) Proliferation of tissues of regenerating aquapharyngeal complex in holothurians. Russ J Dev Biol 24:72–81Google Scholar
  50. Dunn MJ, Franco C, Soares R, Pires E, Koci K, Almeida AM, Santos R, Varela Coelho A (2013) Understanding regeneration through proteomics. Proteomics 13(3–4):686–709Google Scholar
  51. Dupont S, Thorndyke MC (2006) Growth or differentiation? Adaptive regeneration in the brittle star Amphiura filiformis. J Exp Biol 209(19):3873–3881PubMedCrossRefPubMedCentralGoogle Scholar
  52. Dupont S, Thorndyke M (2007) Bridging the regeneration gap: insights from echinoderm models. Nat Rev Genet 8.  https://doi.org/10.1038/nrg1923-c1
  53. Emson RH, Wilkie IC (1980) Fission and autotomy in echinoderms. Oceanogr Mar Biol Annu Rev 18:155–250Google Scholar
  54. Ferrario C, Ben Khadra Y, Czarkwiani A, Zakrzewski A, Martinez P, Colombo G, Bonasoro F, Candia Carnevali MD, Oliveri P, Sugni M (2018) Fundamental aspects of arm repair phase in two echinoderm models. Dev Biol (Special Issue: Regeneration) 433(2):297–309Google Scholar
  55. Feuda R, Smith AB (2015) Phylogenetic signal dissection identifies the root of starfishes. PLoS One 10(5):e0123331PubMedPubMedCentralCrossRefGoogle Scholar
  56. Franco CF, Santos R, Coelho AV (2011a) Exploring the proteome of an echinoderm nervous system: 2DE of the sea star radial nerve cord and the synaptosomal membranes subproteome. Proteomics 11:1359–1364PubMedCrossRefPubMedCentralGoogle Scholar
  57. Franco CF, Santos R, Coelho AV (2011b) Proteome characterization of starfish coelomocytes—the innate immune effector cells of echinoderms. Proteomics 11:3587–3592PubMedCrossRefPubMedCentralGoogle Scholar
  58. Franco CF, Santos R, Coelho AV (2014) Proteolytic events are relevant cellular responses during nervous system regeneration of the starfish Marthasterias glacialis. J Proteome 99:1–25CrossRefGoogle Scholar
  59. Gabre JL, Martinez P, Sköld HN, Ortega-Martinez O, Abril JF (2015) The coelomic epithelium transcriptome from a clonal sea star, Coscinasterias muricata. Mar Genomics.  https://doi.org/10.1016/j.margen.2015.07.010
  60. Galliot B, Ghila L (2010) Cell plasticity in homeostasis and regeneration. Mol Reprod Dev 77(10):837–855PubMedCrossRefPubMedCentralGoogle Scholar
  61. García-Arrarás JE, Dolmatov IY (2010) Echinoderms; potential model systems for studies on muscle regeneration. Curr Pharm Des 16:942–955PubMedPubMedCentralCrossRefGoogle Scholar
  62. García-Arrarás JE, Valentín-Tirado G, Flores JE, Rosa RJ, Rivera-Cruz A, San Miguel-Ruiz JE, Tossas K (2011) Cell dedifferentiation and epithelial to mesenchymal transitions during intestinal regeneration in H. glaberrima. BMC Dev Biol 11:61PubMedPubMedCentralCrossRefGoogle Scholar
  63. Gorshkov AN, Blinova MI, Pinaev GP (2009) Ultrastructure of coelomic epithelium and coelomocytes of the starfish Asterias rubens L. in norm and after wounding. Cell Tissue Biol 3(5):477–490CrossRefGoogle Scholar
  64. Guatelli S (2017) Coelomic epithelium and coelomocytes of Marthasterias glacialis (Asteroidea) in normal and regenerating arm-tips: microscopic anatomy and proteomics characterization. Master thesis, University of MilanGoogle Scholar
  65. Hall MR, Kocot KM, Baughman KW, Fernandez-Valverde SL, Gauthier MEA, Hatleberg WL, Krishnan A, McDougall C, Motti CA, Shoguchi E, Wang T, Xiang X, Zhao M, Bose U, Shinzato C, Hisata K, Fujie M, Kanda M, Cummins SF, Satoh N, Degnan SM, Degnan BM (2017) The crown-of-thorns starfish genome as a guide for biocontrol of this coral reef pest. Nature 544(7649):231–234.  https://doi.org/10.1038/nature22033CrossRefPubMedPubMedCentralGoogle Scholar
  66. Harrison FW, Chia F (1994) Microscopic anatomy of invertebrates. Echinodermata. Wiley, New YorkGoogle Scholar
  67. Heinzeller T, Welsch U (1994) Crinoidea. In: Harrison FW (ed) Microscopic anatomy of invertebrates, Echinodermata, vol 14. Wiley, New York, pp 9–148Google Scholar
  68. Hernroth B, Farahani F, Brunborg G, Dupont S, Dejmek A, Skold H (2010) Possibility of mixed progenitor cells in sea star arm regeneration. J Exp Zool (Mol Dev Evol) 6:457–468CrossRefGoogle Scholar
  69. Holm K, Dupont S, Skold H, Stenius A, Thorndyke MC, Hernroth B (2008) Induced cell proliferation in putative haematopoietic tissues of the sea star, Asterias rubens (L.). J Exp Biol 211:2551–2558PubMedCrossRefPubMedCentralGoogle Scholar
  70. Hotchkiss FHC (2009) Arm stumps and regeneration models in Asteroidea (Echinodermata). Proc Biol Soc Wash 122:342–354CrossRefGoogle Scholar
  71. Huet M (1975) Le role du système nerveux au cours de la regeneration du bras chez une étoile de mer, Asterina gibbosa. Penn (Echinoderme, Astéride). J Embryol Exp Morphol 33:535–552PubMedPubMedCentralGoogle Scholar
  72. Huet M, Franquinet R (1981) Histofluorescence study and biochemical assay of catecholamines (dopamine and noradrenaline) during the course of arm-tip regeneration in the starfish Asterina gibbosa (Echinodermata, Asteroidea). Histochemistry 72:149–154PubMedCrossRefPubMedCentralGoogle Scholar
  73. Hughes SJM, Ruhl HA, Hawkins LE, Hauton C, Boorman B, Billett DSM (2011) Deep-sea echinoderm oxygen consumption rates and an interclass comparison of metabolic rates in Asteroidea, Crinoidea, Echinoidea, Holothuroidea and Ophiuroidea. J Exp Biol 14:2512–2521CrossRefGoogle Scholar
  74. Hyman LH (1955) The invertebrates. Echinodermata, vol XIV. McGrawHill, New YorkGoogle Scholar
  75. Janies DA, Witter Z, Linchangco GV, Foltz DW, Miller AK, Kerr AM et al (2016) EchinoDB, an application for comparative transcriptomics of deeply-sampled clades of echinoderms. BMC Bioinformatics 17(1):48PubMedPubMedCentralCrossRefGoogle Scholar
  76. King RS, Newmark PA (2012) The cell biology of regeneration. J Cell Biol 196(5):553–562PubMedPubMedCentralCrossRefGoogle Scholar
  77. Kondo M, Akasaka K (2010) Regeneration in crinoids. Develop Growth Differ 52:57–68.  https://doi.org/10.1111/j.1440-169X.2009.01159.xCrossRefGoogle Scholar
  78. Kumar A, Brockes JP (2012) Nerve-dependence in tissue, organ, and appendage regeneration. Trends Neurosci 35(11):691–699PubMedCrossRefPubMedCentralGoogle Scholar
  79. Laurens N, Koolwijk P, De Maat PM (2006) Fibrin structure and wound healing. J Thromb Haemost 4:932–939PubMedCrossRefPubMedCentralGoogle Scholar
  80. Lawrence JM (2010) Energetic costs of loss and regeneration of arms in stellate echinoderms. Integr Comp Biol 50(4):506–514.  https://doi.org/10.1093/icb/icq027CrossRefPubMedPubMedCentralGoogle Scholar
  81. Lévesque M, Gatien S, Finnson K, Desmeules S, Villiard E, Pilote M, Philip A, Roy S (2007) Transforming growth factor: beta signaling is essential for limb regeneration in axolotls. PLoS One 2(11):e1227PubMedPubMedCentralCrossRefGoogle Scholar
  82. Luttrell SM, Gotting K, Ross E, Alvarado AS, Swalla BJ (2016) Head regeneration in hemichordates is not a strict recapitulation of development. Dev Dyn 245(12):1159–1175PubMedPubMedCentralCrossRefGoogle Scholar
  83. Mladenov PV (1983) Rate of arm regeneration and potential causes of arm loss in the feather star Florometra serratissima (Echinodermata: Crinoidea). Can J Zool 61(12):28732879CrossRefGoogle Scholar
  84. Mladenov PV, Bisgrove B, Asotra S, Burke RD (1989) Mechanisms of arm-tip regeneration in the sea star Leptasterias hexactis. Roux’s Arch Dev Biol 189:19–28CrossRefGoogle Scholar
  85. Morgan TH (1901) Regeneration. Macmillan, New YorkCrossRefGoogle Scholar
  86. Moss C and Thorndyke MC (1994) Regeneration in the starfish nervous system. In: David B, Guille A, Féral J-P, Roux M (eds) Echinoderms through time. Balkema, Rotterdam. ISBN: 9054105143Google Scholar
  87. Moss C, Hunter J, Thorndyke MC (1998) Pattern of bromodeoxyuridine incorporation and neuropeptide immunoreactivity during arm regeneration in the starfish Asterias rubens. Philos Trans R Soc Lond B 353:421–436CrossRefGoogle Scholar
  88. Niehrs C (2001) Developmental biology. Solving a sticky problem. Nature 413:787–788PubMedCrossRefPubMedCentralGoogle Scholar
  89. O’Hara TD, Hugall AF, Thuy B, Moussalli A (2014) Phylogenomic resolution of the class Ophiuroidea unlocks a global microfossil record. Curr Biol 24(16):1874–1879PubMedCrossRefPubMedCentralGoogle Scholar
  90. Oji T (2001) Fossil record of echinoderm regeneration with special regard to crinoids. Microsc Res Tech 55(6):397–402.  https://doi.org/10.1002/jemt.1186CrossRefPubMedPubMedCentralGoogle Scholar
  91. Oji T (2015) Regeneration, predatory–prey interaction, and evolutionary history of articulate crinoids. Palaeoworld 24(4):389–392CrossRefGoogle Scholar
  92. Ottaviani E (2011) Immunocyte: the invertebrate counterpart of the vertebrate macrophage. Invert Surviv J 8(1):1–4Google Scholar
  93. Oulhen N, Heyland A, Carrier TJ, Zazueta-Novoa V, Fresques T, Laird J, Onorato TM, Janies D, Wessel G (2016) Regeneration in bipinnaria larvae of the bat star Patiria miniata induces rapid and broad new gene expression. Mech Dev 142:10–21PubMedPubMedCentralCrossRefGoogle Scholar
  94. Parma L, Di Benedetto C, Denis-Donini S, Cossu G, Candia Carnevali MD (2006) Primary cell culture in crinoid echinoderms: exploring the plasticity potential of regenerative competent cells. In: Proceedings of 3rd European conference on regeneration, EMBO conference 2006, pp 21Google Scholar
  95. Pastar I, Stojadinovic O, Yin NC, Ramirez H, Nusbaum AG, Sawaya A, Patel SB, Khalid L, Isseroff RR, Tomic-Canic M (2014) Epithelialization in wound healing: a comprehensive review. Adv Wound Care 3:445–464CrossRefGoogle Scholar
  96. Patruno M, Thorndyke MC, Candia Carnevali MD, Bonasoro F, Beesley P (2001) Changes in ubiquitin conjugates and Hsp72 levels during arm regeneration in echinoderms. Mar Biotechnol 3:4–15PubMedCrossRefPubMedCentralGoogle Scholar
  97. Patruno M, Smertenko A, Candia Carnevali MD, Bonasoro F, Beesley PW, Thorndyke MC (2002) Expression of transforming growth factor β-like molecules in normal and regenerating arms of the crinoid Antedon mediterranea: immunocytochemical and biochemical evidence. P R Soc Lond B Biol Sci 269:1741–1747CrossRefGoogle Scholar
  98. Patruno M, McGonnel I, Graham A, Beesley P, Candia Carnevali MD, Thorndyke MC (2003) AnBMP2/4 is a new member of the TGF-β superfamily isolated from a crinoid and involved in regeneration. Proc R Soc Lond B Biol Sci 270:1341–1347.  https://doi.org/10.1098/rspb.2003.2367CrossRefGoogle Scholar
  99. Pinsino A, Thorndyke MC, Matranga V (2007) Coelomocytes and post-traumatic response in the common sea star Asterias rubens. Cell Stress Chaperones 12:331–341PubMedPubMedCentralCrossRefGoogle Scholar
  100. Piovani L (2017) Skeletogenic processes in the regenerating arm of the brittle star Amphiura filiformis (Müller OF, 1776)Google Scholar
  101. Pisani D, Feuda R, Peterson KJ, Smith AB (2012) Resolving phylogenetic signal from noise when divergence is rapid: a new look at the old problem of echinoderm class relationships. Mol Phylogenet Evol 62:27–34PubMedCrossRefPubMedCentralGoogle Scholar
  102. Purushothaman S, Saxena S, Meghah V, Swamy CVB, Ortega-Martinez O, Dupont S, Idris M (2015) Transcriptomic and proteomic analyses of Amphiura filiformis arm tissue-undergoing regeneration. J Proteomics 112:113–124  https://doi.org/10.1016/j.jprot.2014.08.011PubMedCrossRefPubMedCentralGoogle Scholar
  103. Ramírez-Gómez F, García-Arrarás JE (2010) Echinoderm immunity. Invertebr Surviv J 7:211–220Google Scholar
  104. Ramsay K, Bergmann M, Veale LO, Richardson CA, Kaiser MJ, Vize SJ, Feist SW (2001) Damage, autotomy and arm regeneration in starfish caught by towed demersal fishing gears. Mar Biol 138:527–536CrossRefGoogle Scholar
  105. Reich A, Dunn C, Akasaka K, Wessel G (2015) Phylogenomic analyses of Echinodermata support the sister groups of Asterozoa and Echinozoa. PLoS One 10(3):e0119627PubMedPubMedCentralCrossRefGoogle Scholar
  106. Reichensperger A (1912) Beitra¨ge zur Histologie und zum Verlauf der Regeneration bei Crinoiden. Ztschr Wiss Zool 101:1–69Google Scholar
  107. Rieger RM, Lombardi J (1987) Ultrastructure of coelomic lining in echinoderm podia: significance for concepts in the evolution of muscle and peritoneal cells. Zoomorphology 107:191–208CrossRefGoogle Scholar
  108. Sánchez Alvarado A, Tsonis PA (2006) Bridging the regeneration gap: genetic insights from diverse animal models. Nat Rev Genet 7:873–884PubMedCrossRefGoogle Scholar
  109. Sea Urchin Genome Sequencing Consortium, Sodergren E, Weinstock GM, Davidson EH, Cameron RA, Gibbs RA, et al (2006) The genome of the sea urchin Strongylocentrotus purpuratus. Science (New York, NY) 314(5801):941–952Google Scholar
  110. Semmens DC, Mirabeau O, Moghul I, Pancholi MR, Wurm Y, Elphick MR (2016) Transcriptomic identification of starfish neuropeptide precursors yields new insights into neuropeptide evolution. Open Biol 6:150224.  https://doi.org/10.1098/rsob.150224CrossRefPubMedPubMedCentralGoogle Scholar
  111. Sharlaimova NS, Petukhova OA (2012) Characteristics of populations of the coelomic fluid and coelomic epithelium cells from the starfish Asterias rubens L. able attach to and spread on various substrates. Cell Tissue Biol 6:176–188CrossRefGoogle Scholar
  112. Sharlaimova NS, Pinaev GP, Petukhova OA (2010) Comparative analysis of behavior and proliferative activity in culture of cells of coelomic fluid and of cells of various tissues of the sea star Asterias rubens L. isolated from normal and injured animals. Cell Tissue Biol 4(3):280–288CrossRefGoogle Scholar
  113. Sköld M, Rosenberg R (1996) Arm regeneration frequency in eight species of Ophiuroidea (Echinodermata) from European sea areas. J Sea Res 35:353–362CrossRefGoogle Scholar
  114. Smith JE (1937) On the nervous system of the starfish Marthasterias glacialis (L.). Philos Trans R Soc Lond B Biol Sci 227:111–173CrossRefGoogle Scholar
  115. Smith LC, Ghosh J, Buckley KM, Clow LA, Dheilly NM, Haug T, Henson JH, Li C, Man Lun C, Majeske AJ, Matranga V, Nair SV, Rast JP, Raftos DA, Roth M, Sacchi S, Schranke CS, Stensvåg K (2010) Echinoderm immunity. In: Invertebrate immunity, vol 708. Springer, New York, pp 260–301CrossRefGoogle Scholar
  116. Soong K, Shen Y, Tsenq S, Chen C (1997) Regeneration and Potential Functional Differentiation of Arms in the Brittlestar, Ophiocoma scolopendrina (Lamarck) (Echinodermata: Ophiuroidea). Zool Stud 36(2):90–97Google Scholar
  117. Sugni M, Mozzi D, Barbaglio A, Bonasoro F, Candia Carnevali MD (2007) Endocrine Disrupting Compounds and echinoderms: new ecotoxicological sentinels for the marine ecosystem. Ecotoxicology 16:95–108PubMedCrossRefPubMedCentralGoogle Scholar
  118. Sugni M, Wilkie IC, Burighel P, Candia Carnevali MD (2010) New evidence of serotonin involvement in the neurohumoral control of crinoid arm regeneration: effects of parachlorophenilanine and methiothepin. J Mar Biol Assoc UK 90(03):555–562CrossRefGoogle Scholar
  119. Tanaka EM, Ferretti P (2010) Considering the evolution of regeneration in the central nervous system. Nat Rev Neurosci Lond 10:713–723CrossRefGoogle Scholar
  120. Telford MJ, Lowe CJ, Cameron CB, Ortega-Martinez O, Aronowicz J, Oliveri P, Copley RR (2014) Phylogenomic analysis of echinoderm class relationships supports Asterozoa. Proc Biol Sci 281(1786)Google Scholar
  121. Thorndyke MC, Candia Carnevali MD (2001) Regeneration neurohormones and growth factors in echinoderms. Can J Zool 79(7):1171–1208CrossRefGoogle Scholar
  122. Thorndyke MC, Chen W-C, Beesley PW, Patruno M (2001) Molecular approach to echinoderm regeneration. Microsc Res Tech 55:474–485PubMedCrossRefPubMedCentralGoogle Scholar
  123. Thuy B, Stöhr S (2016) A new morphological phylogeny of the Ophiuroidea (Echinodermata) accords with molecular evidence and renders microfossils accessible for cladistics. PLoS One 11(5):e0156140PubMedPubMedCentralCrossRefGoogle Scholar
  124. Valoti G, Ferrario C, Candia Carnevali MD, Sugni M (2016) Regenerative potential of Echinaster sepositus (Retzius, 1783) arm explants: macro- and microscopic analyses. In: Proceedings of the LXXVII Congresso Nazionale dell’Unione Zoologica ItalianaGoogle Scholar
  125. Veeman MT, Axelrod JD, Moon RT (2003) A second canon: functions and mechanisms of b-catenin-independent Wnt signaling. Dev Cell 5:367–377PubMedCrossRefPubMedCentralGoogle Scholar
  126. Vickery MCL, Vickery MS, McClintock JB, Amsler CD (2001) Utilization of a novel deuterostome model for the study of regeneration genetics: molecular cloning of genes that are differentially expressed during early stages of larval sea star regeneration. Gene 262:73–80PubMedCrossRefPubMedCentralGoogle Scholar
  127. Walsh GE, McLaughlin LL, Louie MK, Deans CH, Lores EM (1986) Inhibition of arm regeneration by Ophioderma brevispina (Echinodermata, Ophiuroidea) by tributyltin oxide and triphenyltin oxide. Ecotoxicol Environ Saf 12(1):95–100PubMedCrossRefPubMedCentralGoogle Scholar
  128. Whyte JL, Smith AA, Helms JA (2012) Wnt signaling and injury repair. Cold Spring Harb Perspect Biol 4(8):a008078PubMedPubMedCentralCrossRefGoogle Scholar
  129. Wilkie IC (1978) Arm autotomy in brittle stars (Echinodermata: Ophiuroidea). J Zool Lond 186:311–330CrossRefGoogle Scholar
  130. Wilkie IC (2001) Autotomy as a prelude to regeneration in echinoderms. Microsc Res Tech 55(6):369–396PubMedCrossRefPubMedCentralGoogle Scholar
  131. Wodarz A, Nusse R (1998) Mechanisms of Wnt signaling in development. Annu Rev Cell Dev Biol 14:59–88PubMedCrossRefPubMedCentralGoogle Scholar
  132. Wu S-Y, Ferkowicz M, McClay DR (2007) Ingression of primary mesenchyme cells of the sea urchin embryo: A precisely timed epithelial mesenchymal transition. Birth Defects Res C Embryo Today Rev 81(4):241–252.  https://doi.org/10.1002/bdrc.20113CrossRefGoogle Scholar
  133. Yokoyama LQ, Amaral ACZ (2010) Arm regeneration in two populations of Ophionereis reticulate (Echinodermata, Ophiuroidea). Iheringia Sér Zool Porto Alegre 100(2):123–127CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Yousra Ben Khadra
    • 1
  • Michela Sugni
    • 2
    • 3
  • Cinzia Ferrario
    • 2
    • 3
  • Francesco Bonasoro
    • 2
  • Paola Oliveri
    • 4
  • Pedro Martinez
    • 5
    • 6
  • Maria Daniela Candia Carnevali
    • 2
  1. 1.Laboratoire de Recherche, Génétique, Biodiversité et Valorisation des Bioressources, Institut Supérieur de Biotechnologie de MonastirUniversité de MonastirMonastirTunisia
  2. 2.Dipartimento di Scienze e Politiche AmbientaliUniversità degli Studi di MilanoMilanoItaly
  3. 3.Center for Complexity & Biosystems, Dipartimento di FisicaUniversità degli Studi di MilanoMilanoItaly
  4. 4.Department of Genetics, Evolution and EnvironmentUniversity College LondonLondonUK
  5. 5.Departament de Genètica, Microbiologia I EstadísticaUniversitat de BarcelonaBarcelonaSpain
  6. 6.ICREA (Institut Català de Recerca i Estudis Avancats)BarcelonaSpain

Personalised recommendations