Nonprotein-Coding RNAs as Regulators of Development in Tunicates

Part of the Results and Problems in Cell Differentiation book series (RESULTS, volume 65)


Tunicates, or urochordates, are a group of small marine organisms that are found widely throughout the seas of the world. As most plausible sister group of the vertebrates, they are of utmost importance for a comprehensive understanding of chordate evolution; hence, they have served as model organisms for many aspects of the developmental biology. Current genomic analysis of tunicates indicates that their genomes evolved with a fast rate not only at the level of nucleotide substitutions but also in terms of genomic organization. The latter involves genome reduction, rearrangements, as well as the loss of some important coding and noncoding RNA (ncRNAs) elements and even entire genomic regions that are otherwise well conserved. These observations are largely based on evidence from comparative genomics resulting from the analysis of well-studied gene families such as the Hox genes and their noncoding elements. In this chapter, the focus lies on the ncRNA complement of tunicates, with a particular emphasis on microRNAs, which have already been studied extensively for other animal clades. MicroRNAs are known as important regulators of key genes in animal development, and they are intimately related to the increase morphological complexity in higher metazoans. Here we review the discovery, evolution, and genome organization of the miRNA repertoire, which has been drastically reduced and restructured in tunicates compared to the chordate ancestor. Known functions of microRNAs as regulators of development in tunicates are a central topic. For instance, we consider the role of miRNAs as regulators of the muscle development and their importance in the regulation of the differential expression during the oral siphon regeneration. Beyond microRNAs, we touch upon the functions of some other ncRNAs such as yellow crescent RNA, moRNAs, RMST lncRNAs, or spliced-leader (SL) RNAs, which have diverse functions associated with the embryonic development, neurogenesis, and mediation of mRNA stability in general.



This work and the computational analysis were partially supported by the equipment donation from the German Academic Exchange Service—DAAD to the Faculty of Science at the Universidad Nacional de Colombia and by the computational laboratory from Bioinformatics Group at the Department of Computer Science and Interdisciplinary Center for Bioinformatics at the Leipzig University. The comparative analysis was partially supported by Colciencias (project no. 110165843196, contract 571-2014). CAVH acknowledges the support by DAAD scholarship: Forschungsstipendien-Promotionen in Deutschland, 2017/2018 (Bewerbung 57299294). CIBS acknowledges Universidad Nacional de Colombia for the time granted to write this chapter. FDB was supported by a FAPESP JP 2015/50164-5 (ANR collaborative grant).


  1. Aboobaker AA, Tomancak P, Patel N, Rubin GM, Lai EC (2005) Drosophila micrornas exhibit diverse spatial expression patterns during embryonic development. Proc Natl Acad Sci 102(50):18017–18022PubMedCrossRefGoogle Scholar
  2. Agabian N (1990) Trans splicing of nuclear pre-mRNAs. Cell 61(7):1157–1160PubMedCrossRefGoogle Scholar
  3. Ambros V, Bartel B, Bartel DP, Burge CB, Carrington JC, Chen X, Dreyfuss G, Eddy SR, Griffiths-Jones S, Marshall M, Matzke M, Ruvkun G, Tuschl T (2003) A uniform system for microRNA annotation. RNA 9:277–279PubMedPubMedCentralCrossRefGoogle Scholar
  4. Ameres SL, Zamore PD (2013) Diversifying microRNA sequence and function. Nat Rev Mol Cell Biol 14:475–488PubMedCrossRefGoogle Scholar
  5. Bartel DP (2009) MicroRNA target recognition and regulatory functions. Cell 136:215–233PubMedPubMedCentralCrossRefGoogle Scholar
  6. Bashirullah A, Cooperstock RL, Lipshitz HD (1998) RNA localization. Annu Rev Biochem 67:335–394PubMedCrossRefGoogle Scholar
  7. Bentwich I, Avniel AA, Karov Y, Aharonov R, Gilad S, Barad O, Barzilai A, Einat P, Einav U, Meiri E, Sharon E, Spector Y, Bentwich Z (2005) Identification of hundreds of conserved and nonconserved human microRNAs. Nat Genet 37:766–770PubMedCrossRefGoogle Scholar
  8. Berezikov E (2011) Evolution of microRNA diversity and regulation in animals. Nat Rev Genet 12:846–860PubMedCrossRefGoogle Scholar
  9. Berezikov E, Thuemmler F, van Laake LW, Kondova I, Bontrop R, Cuppen E, Plasterk RH (2006) Diversity of microRNAs in human and chimpanzee brain. Nat Genet 38:1375–1377PubMedCrossRefGoogle Scholar
  10. Blumenthal T (1995) Trans-splicing and polycistronic transcription in Caenorhabditis elegans. Trends Genet 11(4):132–136PubMedCrossRefGoogle Scholar
  11. Bortoluzzi S, Biasiolo M, Bisognin A (2011) MicroRNA-offset RNAs (moRNAs): by-product spectators or functional players? Trends Mol Med 17(9):473–474PubMedCrossRefGoogle Scholar
  12. Brunetti R, Gissi C, Pennati R, Caicci F, Gasparini F, Manni L (2015) Morphological evidence that the molecularly determined Ciona intestinalis type a and type b are different species: Ciona robusta and Ciona intestinalis. J Zool Syst Evol Res 53(3):186–193CrossRefGoogle Scholar
  13. Campo-Paysaa F, Sémon M, Cameron RA, Peterson KJ, Schubert M (2011) MicroRNA complements in deuterostomes: origin and evolution of microRNAs. Evol Dev 13(1):15–27PubMedCrossRefGoogle Scholar
  14. Cerutti H, Casas-Mollano JA (2006) On the origin and functions of RNA-mediated silencing: from protists to man. Curr Genet 50:81–99PubMedPubMedCentralCrossRefGoogle Scholar
  15. Chen J-F, Mandel EM, Thomson JM, Wu Q, Callis TE, Hammond SM, Conlon FL, Wang D-Z (2005) The role of microRNA-1 and microRNA-133 in skeletal muscle proliferation and differentiation. Nat Genet 38:228–233PubMedPubMedCentralCrossRefGoogle Scholar
  16. Chen JS, Pedro MS, Zeller RW (2011) miR-124 function during Ciona intestinalis neuronal development includes extensive interaction with the notch signaling pathway. Development 138(22):4943–4953PubMedCrossRefGoogle Scholar
  17. Chen JS, Gumbayan AM, Zeller RW, Mahaffy JM (2014) An expanded Notch-Delta model exhibiting long-range patterning and incorporating microRNA regulation. PLoS Comput Biol 10(6)Google Scholar
  18. Cheng L-C, Pastrana E, Tavazoie M, Doetsch F (2009) miR-124 regulates adult neurogenesis in the subventricular zone stem cell niche. Nat Neurosci 12:399–408PubMedPubMedCentralCrossRefGoogle Scholar
  19. Clark AM, Goldstein LD, Tevlin M, Tavaré S, Shaham S, Miska EA (2010) The microRNA miR-124 controls gene expression in the sensory nervous system of Caenorhabditis elegans. Nucleic Acids Res 38(11):3780–3793PubMedPubMedCentralCrossRefGoogle Scholar
  20. Collier JR, Monk NA, Maini PK, Lewis JH (1996) Pattern formation by lateral inhibition with feedback: a mathematical model of delta-notch intercellular signalling. J Theor Biol 183(4):429–446PubMedCrossRefGoogle Scholar
  21. Dai Z, Chen Z, Ye H, Zhou L, Cao L, Wang Y, Peng S, Chen L (2009) Characterization of microRNAs in cephalochordates reveals a correlation between microRNA repertoire homology and morphological similarity in chordate evolution. Evol Dev 11:41–49PubMedCrossRefGoogle Scholar
  22. Delsuc, F., Philippe, H., Tsagkogeorga, G., Simion, P., Tilak, M.-K., Turon, X., Lopez-Legentil, S., Piette, J., Lemaire, P., and Douzery, E. J. P. (2017). A phylogenomic framework and timescale for comparative genomics and evolutionary developmental biology of tunicates. bioRxiv.
  23. Denoeud F, Henriet S, Mungpakdee S, Aury J-M, Da Silva C, Brinkmann H, Mikhaleva J, Olsen LC, Jubin C, Cañestro C, Bouquet J-M, Danks G, Poulain J, Campsteijn C, Adamski M, Cross I, Yadetie F, Muffato M, Louis A, Butcher S, Tsagkogeorga G, Konrad A, Singh S, Jensen MF, Cong EH, Eikeseth-Otteraa H, Noel B, Anthouard V, Porcel BM, Kachouri-Lafond R, Nishino A, Ugolini M, Chourrout P, Nishida H, Aasland R, Huzurbazar S, Westhof E, Delsuc F, Lehrach H, Reinhardt R, Weissenbach J, Roy SW, Artiguenave F, Postlethwait JH, Manak JR, Thompson EM, Jaillon O, Du Pasquier L, Boudinot P, Liberles DA, Volff J-N, Philippe H, Lenhard B, Crollius HR, Wincker P, Chourrout D (2010) Plasticity of animal genome architecture unmasked by rapid evolution of a pelagic tunicate. Science 330(6009):1381–1385PubMedPubMedCentralCrossRefGoogle Scholar
  24. Friedländer MR, Mackowiak SD, Li N, Chen W, Rajewsky N (2012) miRDeep2 accurately identifies known and hundreds of novel microRNA genes in seven animal clades. Nucleic Acids Res 40:37–52PubMedCrossRefGoogle Scholar
  25. Fu X, Adamski M, Thompson EM (2008) Altered miRNA repertoire in the simplified chordate, Oikopleura dioica. Mol Biol Evol 25:1067–1080PubMedCrossRefGoogle Scholar
  26. Galderisi U, Jori FP, Giordano A (2003) Cell cycle regulation and neural differentiation. Oncogene 22:5208–5219PubMedCrossRefGoogle Scholar
  27. Ganot P, Kallesøe T, Reinhardt R, Chourrout D, Thompson EM (2004) Spliced-leader RNA trans splicing in a chordate, Oikopleura dioica, with a compact genome. Mol Cell Biol 24(17):7795–7805PubMedPubMedCentralCrossRefGoogle Scholar
  28. Griffiths-Jones S, Hui JHL, Marco A, Ronshaugen M (2011) MicroRNA evolution by arm switching. EMBO Rep 12(2):172–177PubMedPubMedCentralCrossRefGoogle Scholar
  29. Heimberg AM, Sempere LF, Moy VN, Donoghue PCJ, Peterson K (2007) MicroRNAs and the advent of vertebrate morphological complexity. Proc Natl Acad Sci USA 105:2946–2950CrossRefGoogle Scholar
  30. Heimberg AM, Cowper-Sal R, Sémon M, Donoghue PC, Peterson KJ (2010) MicroRNAs reveal the interrelationships of hagfish, lampreys, and gnathostomes and the nature of the ancestral vertebrate. Proc Natl Acad Sci USA 107:19379–19383PubMedCrossRefGoogle Scholar
  31. Hendrix D, Levine M, Shi W (2010) miRTRAP, a computational method for the systematic identification of miRNAs from high throughput sequencing data. Genome Biol 11(4):R39PubMedPubMedCentralCrossRefGoogle Scholar
  32. Hertel J, Stadler PF (2015) The expansion of animal microRNA families revisited. Life 5:905–920PubMedPubMedCentralCrossRefGoogle Scholar
  33. Hertel J, Lindemeyer M, Missal K, Fried C, Tanzer A, Flamm C, Hofacker IL, Stadler PF, The Students of Bioinformatics Computer Labs 2004 and 2005 (2006) The expansion of the metazoan microRNA repertoire. BMC Genomics 7:25PubMedPubMedCentralCrossRefGoogle Scholar
  34. Hertel J, Bartschat S, Wintsche A, Otto C, The Students of the Bioinformatics Computer Lab 2011, Stadler PF (2012) Evolution of the let-7 microRNA family. RNA Biol 9:231–241PubMedPubMedCentralCrossRefGoogle Scholar
  35. Holland LZ (2015) Genomics, evolution and development of amphioxus and tunicates: the Goldilocks principle. J Exp Zool Part B Mol Dev Evol 324(4):342–352CrossRefGoogle Scholar
  36. Ikuta T, Saiga H (2005) Organization of hox genes in ascidians: present, past, and future. Dev Dyn 233(2):382–389PubMedCrossRefGoogle Scholar
  37. Joyce Tang W, Chen JS, Zeller RW (2013) Transcriptional regulation of the peripheral nervous system in Ciona intestinalis. Dev Biol 378(2):183–193PubMedCrossRefGoogle Scholar
  38. Jue NK, Batta-Lona PG, Trusiak S, Obergfell C, Bucklin A, O’neill MJ, O’Neill RJ (2016) Rapid evolutionary rates and unique genomic signatures discovered in the first reference genome for the southern ocean salp, Salpa thompsoni (Urochordata, Thaliacea). Genome Biol Evol 8(10):3171–3186PubMedPubMedCentralCrossRefGoogle Scholar
  39. Keshavan R, Virata M, Keshavan A, Zeller RW (2010) Computational identification of Ciona intestinalis microRNAs. Zool Sci 27(2):162–170PubMedCrossRefGoogle Scholar
  40. Knapp D, Schulz H, Rascon CA, Volkmer M, Scholz J, Nacu E, Le M, Novozhilov S, Tazaki A, Protze S, Jacob T, Hubner N, Habermann B, Tanaka EM (2013) Comparative transcriptional profiling of the axolotl limb identifies a tripartite regeneration-specific gene program. PLoS One 8(5):1–20CrossRefGoogle Scholar
  41. Kocot KM, Tassia MG, Halanych KM, Swalla BJ (2018) Phylogenomics offers resolution of major tunicate relationships. Mol Phylogenet Evol 121:166–173PubMedCrossRefGoogle Scholar
  42. Kusakabe R, Tani S, Nishitsuji K, Shindo M, Okamura K, Miyamoto Y, Nakai K, Suzuki Y, Kusakabe TG, Inoue K (2013) Characterization of the compact bicistronic microRNA precursor, miR-1/miR-133, expressed specifically in Ciona muscle tissues. Gene Expr Patterns 13(1-2):43–50PubMedCrossRefGoogle Scholar
  43. Langenberger D, Bermudez-Santana C, Hertel J, Hoffmann S, Khaitovich P, Stadler PF (2009) Evidence for human microRNA-offset RNAs in small RNA sequencing data. Bioinformatics 25(18):2298–2301PubMedCrossRefGoogle Scholar
  44. Langenberger D, Bermudez-Santana C, Stadler PF, Hoffmann S (2010) Identification and classification of small RNAs in transcriptome sequence data. Pac Symp Biocomput 15:80–87Google Scholar
  45. Langenberger D, Çakir MV, Hoffmann S, Stadler PF (2012) Dicer-processed small RNAs: rules and exceptions. J Exp Zool Mol Dev Evol 320:35–46CrossRefGoogle Scholar
  46. Lee MG-S, der Ploeg LHTV (1997) Transcription of protein-coding genes in trypanosomes by RNA polymerase I. Annu Rev Microbiol 51(1):463–489PubMedCrossRefGoogle Scholar
  47. Lee CT, Risom T, Strauss WM (2007) Evolutionary conservation of microRNA regulatory circuits: an examination of microRNA gene complexity and conserved microRNA-target interactions through metazoan phylogeny. DNA Cell Biol 26:209–218PubMedCrossRefGoogle Scholar
  48. Legendre M, Lambert A, Gautheret D (2005) Profile-based detection of microRNA precursors in animal genomes. Bioinformatics 21(7):841–845PubMedCrossRefGoogle Scholar
  49. Liang H, Li W (2009) Lowly expressed human microRNA genes evolve rapidly. Mol Biol Evol 26:1195–1198PubMedPubMedCentralCrossRefGoogle Scholar
  50. Lin S-L, Miller JD, Ying S-YY (2006) Intronic microRNA (miRNA). J Biomed Biotechnol.
  51. Lu J, Shen Y, Wu Q, Kumar S, He B, Shi S, Carthew RW, Wang SM, Wu CI (2008) The birth and death of microRNA genes in Drosophila. Nat Genet 40:351–355PubMedCrossRefGoogle Scholar
  52. Lund E, Güttinger S, Calado A, Dahlberg JE, Kutay U (2004) Nuclear export of microRNA precursors. Science 303:95–98PubMedCrossRefGoogle Scholar
  53. Marco A, Ninova M, Ronshaugen M, Griffiths-Jones S (2013) Clusters of microRNAs emerge by new hairpins in existing transcripts. Nucleic Acids Res 41:7745–7752PubMedPubMedCentralCrossRefGoogle Scholar
  54. Maroney PA, Denker JA, Darzynkiewicz E, Laneve R, Nilsen TW (1995) Most mRNAs in the nematode ascaris lumbricoides are trans-spliced: a role for spliced leader addition in translational efficiency. RNA 1(7):714–723PubMedPubMedCentralGoogle Scholar
  55. McBeath R, Pirone DM, Nelson CM, Bhadriraju K, Chen CS (2004) Cell shape, cytoskeletal tension, and RhoA regulate stem cell lineage commitment. Dev Cell 6(4):483–495PubMedCrossRefGoogle Scholar
  56. Meiri E, Levy A, Benjamin H, Ben-David M, Cohen L, Dov A, Dromi N, Elyakim E, Yerushalmi N, Zion O, Lithwick-Yanai G, Sitbon E (2010) Discovery of microRNAs and other small RNAs in solid tumors. Nucleic Acids Res 38(18):6234–6246PubMedPubMedCentralCrossRefGoogle Scholar
  57. Meunier J, Lemoine F, Soumillon M, Liechti A, Weier M, Guschanski K, Hu H, Khaitovich P, Kaessmann H (2012) Birth and expression evolution of mammalian microRNA genes. Genome Res 23:34–45PubMedCrossRefGoogle Scholar
  58. Missal K, Rose D, Stadler PF (2005) Non-coding RNAs in Ciona intestinalis. Bioinformatics 21(S2):77–78Google Scholar
  59. Nawrocki EP, Eddy SR (2013) Infernal 1.1: 100-fold faster RNA homology searches. Bioinformatics 29(22):2933–2935PubMedPubMedCentralCrossRefGoogle Scholar
  60. Ng S-Y, Bogu GK, Soh BS, Stanton LW (2013) The long noncoding RNA RMST interacts with SOX2 to regulate neurogenesis. Mol Cell 51(3):349–359PubMedCrossRefGoogle Scholar
  61. Niwa R, Slack FJ (2007) The evolution of animal microRNA function. Curr Opin Genet Dev 17:145–150PubMedCrossRefGoogle Scholar
  62. Norden-Krichmar TM, Holtz J, Pasquinelli AE, Gaasterland T (2007) Computational prediction and experimental validation of Ciona intestinalis microRNA genes. BMC Genomics 8(1):445PubMedPubMedCentralCrossRefGoogle Scholar
  63. Pasquinelli AE, Reinhart BJ, Slack F, Martindale MQ, Kuroda MI, Maller B, Hayward DC, Ball EE, Degnan B, Müller P, Spring J, Srinivasan a, Fishman M, Finnerty J, Corbo J, Levine M, Leahy P, Davidson E, Ruvkun G (2000) Conservation of the sequence and temporal expression of let-7 heterochronic regulatory RNA. Nature 408(6808):86–89PubMedCrossRefGoogle Scholar
  64. Pasquinelli AE, McCoy A, Jimenez E, Salo E, Ruvkun G, Martindale MQ, Baguna J (2003) Expression of the 22 nucleotide let-7 heterochronic RNA throughout the Metazoa: a role in life history evolution? Evol Dev 5(4):372–378PubMedCrossRefGoogle Scholar
  65. Peterson KJ, Dietrich MR, McPeek MA (2009) MicroRNAs and metazoan macroevolution: insights into canalization, complexity, and the Cambrian explosion. Bioessays 31:736–747PubMedCrossRefGoogle Scholar
  66. Price N, Cartwright RA, Sabath N, Graur D, Azevedo RB (2011) Neutral evolution of robustness in drosophila microRNA precursors. Mol Biol Evol 28:2115–2123PubMedPubMedCentralCrossRefGoogle Scholar
  67. Prochnik SE, Rokhsar DS, Aboobaker AA (2007) Evidence for a microRNA expansion in the bilaterian ancestor. Dev Genes Evol 217:73–77PubMedCrossRefGoogle Scholar
  68. Reinhart BJ, Slack FJ, Basson M, Pasquinelli AE, Bettinger JC, Rougvie AE, Horvitz HR, Ruvkun G (2000) The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature 403:901–906PubMedCrossRefGoogle Scholar
  69. Satou Y, Mineta K, Ogasawara M, Sasakura Y, Shoguchi E, Ueno K, Yamada L, Matsumoto J, Wasserscheid J, Dewar K, Wiley GB, Macmil SL, Roe BA, Zeller RW, Hastings KE, Lemaire P, Lindquist E, Endo T, Hotta K, Inaba K (2008) Improved genome assembly and evidence-based global gene model set for the chordate Ciona intestinalis: new insight into intron and operon populations. Genome Biol 9(10):R152PubMedPubMedCentralCrossRefGoogle Scholar
  70. Sempere LF, Freemantle S, Pitha-Rowe I, Moss E, Dmitrovsky E, Ambros V (2004) Expression profiling of mammalian microRNAs uncovers a subset of brain-expressed microRNAs with possible roles in murine and human neuronal differentiation. Genome Biol 5(3):R13PubMedPubMedCentralCrossRefGoogle Scholar
  71. Sempere LF, Cole CN, McPeek MA, Peterson KJ (2006) The phylogenetic distribution of metazoan microRNAs: insights into evolutionary complexity and constraint. J Exp Zool B Mol Dev Evol 306B:575–588CrossRefGoogle Scholar
  72. Shabalina SA, Koonin EV (2008) Origins and evolution of eukaryotic RNA interference. Trends Ecol Evol 23:578–587PubMedPubMedCentralCrossRefGoogle Scholar
  73. Shi W, Hendrix D, Levine M, Haley B (2009) A distinct class of small RNAs arises from pre-miRNA–proximal regions in a simple chordate. Nat Struct Mol Biol 16(2):183–189PubMedPubMedCentralCrossRefGoogle Scholar
  74. Spina EJ, Guzman E, Zhou H, Kosik KS, Smith WC (2017) A microRNA-mRNA expression network during oral siphon regeneration in Ciona. Development 144(10):1787–1797PubMedPubMedCentralCrossRefGoogle Scholar
  75. Swalla BJ, Jeffery WR (1995) A maternal RNA localized in the yellow crescent is segregated to the larval muscle cells during ascidian development. Dev Biol 170(2):353–364PubMedCrossRefGoogle Scholar
  76. Taft RJ, Pang KC, Mercer TR, Dinger M, Mattick JS (2010) Non-coding RNAs: regulators of disease. J Pathol 220(2):126–139PubMedCrossRefGoogle Scholar
  77. Tanzer A, Stadler PF (2004) Molecular evolution of a microRNA cluster. J Mol Biol 339:327–335PubMedCrossRefGoogle Scholar
  78. Tanzer A, Riester M, Hertel J, Bermudez-Santana CI, Gorodkin J, Hofacker IL, Stadler PF (2010) Evolutionary genomics of microRNAs and their relatives. In: Caetano-Anolles G (ed) Evolutionary genomics and systems biology. Wiley-Blackwell, Hoboken, NJ, pp 295–327CrossRefGoogle Scholar
  79. Terai G, Okida H, Asai K, Mituyama T (2012) Prediction of conserved precursors of miRNAs and their mature forms by integrating position-specific structural features. PLoS One 7(9):1–11CrossRefGoogle Scholar
  80. Umbach JL, Cullen BR (2010) In-depth analysis of Kaposi’s sarcoma-associated herpesvirus microRNA expression provides insights into the mammalian microRNA-processing machinery. J Virol 84(2):695–703PubMedCrossRefGoogle Scholar
  81. Umbach JL, Strelow LI, Wong SW, Cullen BR (2010) Analysis of rhesus rhadinovirus microRNAs expressed in virus-induced tumors from infected rhesus macaques. Virology 405(2):592–599PubMedPubMedCentralCrossRefGoogle Scholar
  82. Vandenberghe AE, Meedel TH, Hastings KE (2001) mRNA 5′-leader trans-splicing in the chordates. Genes Dev 15(3):294–303PubMedPubMedCentralCrossRefGoogle Scholar
  83. Velandia-Huerto CA, Gittenberger AA, Brown FD, Stadler PF, Bermudez-Santana CI (2016) Automated detection of ncRNAs in the draft genome sequence of a colonial tunicate: the carpet sea squirt Didemnum vexillum. BMC Genomics 17:691PubMedPubMedCentralCrossRefGoogle Scholar
  84. Wang K, Dantec C, Lemaire P, Onuma TA, Nishida H (2017) Genome-wide survey of miRNAs and their evolutionary history in the ascidian, Halocynthia roretzi. BMC Genomics 18(1):314PubMedPubMedCentralCrossRefGoogle Scholar
  85. Wheeler BM, Heimberg AM, Moy VN, Sperling EA, Holstein TW, Heber S, Peterson KJ (2009) The deep evolution of metazoan microRNAs. Evol Dev 11:50–68PubMedCrossRefGoogle Scholar
  86. Will S, Reiche K, Hofacker IL, Stadler PF, Backofen R (2007) Inferring noncoding RNA families and classes by means of genome-scale structure-based clustering. PLoS Comput Biol 3(4):680–691CrossRefGoogle Scholar
  87. Yagi K, Satou Y, Mazet F, Shimeld SM, Degnan B, Rokhsar D, Levine M, Kohara Y, Satoh N (2003) A genomewide survey of developmentally relevant genes in Ciona intestinalis. Dev Genes Evol 213(5):235–244PubMedCrossRefGoogle Scholar
  88. Zhao J, Schnitzler GR, Iyer LK, Aronovitz MJ, Baur WE, Karas RH (2016) MicroRNA-offset RNA alters gene expression and cell proliferation. PLoS One 11(6):1–16Google Scholar
  89. Zhao Y, Cong L, Lukiw WJ (2018) Plant and animal microRNAs (miRNAs) and their potential for inter-kingdom communication. Cell Mol Neurobiol 38(1):133–140PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Bioinformatics Group, Department of Computer Science, and Interdisciplinary Center for BioinformaticsUniversität LeipzigLeipzigGermany
  2. 2.Biology DepartmentUniversidad Nacional de ColombiaBogotáColombia
  3. 3.Departamento de Zoologia, Instituto BiociênciasUniversidade de São PauloSão PauloBrazil
  4. 4.Laboratorio de Biología del Desarrollo Evolutiva, Departamento de Ciencias BiológicasUniversidad de los AndesBogotáColombia
  5. 5.Institute of BiologyLeiden UniversityLeidenNetherlands
  6. 6.GiMaRISBioScience Park LeidenLeidenNetherlands
  7. 7.Naturalis Biodiversity CenterLeidenNetherlands

Personalised recommendations