Advertisement

Hierarchical Biological Materials

  • Hermann Ehrlich
Chapter
Part of the Biologically-Inspired Systems book series (BISY, volume 13)

Abstract

Today bioinspiration stimulates the development of new generation of advanced functional materials and constructs with sophisticated architecture and exceptional properties. Due to large diversity, marine invertebrates (i.e. radiolarians; diatoms; molluscs; corals and sponges) are inexhaustible source of inspiration for development of different types of rigid; and flexible materials. Their biomineralized cellular tissues with anastomosing hierarchical complex microstructure combine high strength and stiffness with low weight. Cellular materials can be assumed as multiphase composites that comprise of the fluid and solid phases, while this fluid has gaseous nature. From the morphological point of view, these cellular composites can be divided into 2-D solids, like honeycomb structures comprising hexagonal cells, as well as 3-D foams, like sponges.

References

  1. Aizenberg J, Fratzl P (2013) New materials through bioinspiration and nanoscience. Adv Funct Mater 23:4398–4399CrossRefGoogle Scholar
  2. Ashby MF, Gibson LJ, Wegst U et al (1995) The mechanical-properties of natural materials. 1. Material property charts. Proc R Soc London Ser A – Math Phys Sci 450:123–140CrossRefGoogle Scholar
  3. Benoiston AS, Ibarbalz FM, Bittner L, Lionel Guidi L et al (2017) The evolution of diatoms and their biogeochemical functions. Philos Trans R Soc Lond Ser B Biol Sci 372(1728):20160397CrossRefGoogle Scholar
  4. Berger JB, Wadley HNG, McMeeking RM (2017) Mechanical metamaterials at the theoretical limit of isotropic elastic stiffness. Nature 543:533–537CrossRefGoogle Scholar
  5. Berglund L, Burgert I (2018) Bioinspired wood nanotechnology for functional materials. Adv Mater 30(19):1704285CrossRefGoogle Scholar
  6. Bhate D (2019) Four questions in cellular material design. Materials (Basel) 12(7):1060CrossRefGoogle Scholar
  7. Bhushan B (2009) Biomimetics. Phil Trans R Soc A 367:1443–1444CrossRefGoogle Scholar
  8. Bigi A, Boanini E (2017) Functionalized biomimetic calcium phosphates for bone tissue repair. J Appl Biomater Funct Mater 15(4):313–325Google Scholar
  9. Bowles RD, Setton LA (2018) Biomaterials for intervertebral disc regeneration and repair. Biomaterials 129:54–67CrossRefGoogle Scholar
  10. Burgueño R, Quagliata MJ, Mohanty AK et al (2005) Hierarchical cellular designs for load-bearing biocomposite beams and plates. Mater Sci Eng A 390(1–2):178–187CrossRefGoogle Scholar
  11. Christian S (2009) Biocomposites for the Construction Industry. Ph.D. Dissertation, Stanford University expected publicationGoogle Scholar
  12. Cremaldi JC, Bhushan B (2018) Bioinspired self-healing materials: lessons from nature. Beilstein J Nanotechnol 9:907–935CrossRefGoogle Scholar
  13. D’Arcy Thompson W (1942) On growth and form. Cambridge University Press, Cambridge, UKGoogle Scholar
  14. Ding F, Liu J, Zeng S et al (2017) Biomimetic nanocoatings with exceptional mechanical, barrier, and flame-retardant properties from large-scale one-step coassembly. Sci Adv 3:e1701212CrossRefGoogle Scholar
  15. Du J, Hao P (2018) Investigation on microstructure of beetle elytra and energy absorption properties of bio-inspired honeycomb thin-walled structure under axial dynamic crushing. Nanomaterials (Basel) 8(9):667CrossRefGoogle Scholar
  16. Dunlop JWC, Fratzl P (2013) Multilevel architectures in natural materials. Scr Mater 68:8–12CrossRefGoogle Scholar
  17. Dunlop JWC, Fratzl P (2015) Making a tooth mimic. Nat Mater 14(11):1082–1083CrossRefGoogle Scholar
  18. Ferrara MA, Dardano P, De Stefano L, Rea I et al (2014) Optical properties of diatom nanostructured biosilica in Arachnoidiscus sp: micro-optics from mother nature. PLoS One 9(7):e103750CrossRefGoogle Scholar
  19. Fortes MA, Ashby MF (1999) The effect of non-uniformity on the in-plane modulus of honeycombs. Acta Mater 47:3469–3473CrossRefGoogle Scholar
  20. Frank MB, Naleway SE, Wirth TS, Jae-Young Jung JY et al (2016) A protocol for bioinspired design: a ground sampler based on sea urchin jaws. J Vis Exp 110:53554Google Scholar
  21. Fratzl P, Weinkamer R (2007) Nature’s hierarchical materials. Prog Mater Sci 52:1263–1334CrossRefGoogle Scholar
  22. Fratzl P, Speck T, Gorb S (2016) Function by internal structure-preface to the special issue on bioinspired hierarchical materials. Bioinspir Biomim 11:060301CrossRefGoogle Scholar
  23. Gagliardi M (2017) Biomimetic and bioinspired nanoparticles for targeted drug delivery. Ther Deliv 8:289–299CrossRefGoogle Scholar
  24. Gibson LJ (2005) Biomechanics of cellular solids. J Biomech 38:377–399CrossRefGoogle Scholar
  25. Gibson LJ, Ashby MF (1988) Cellular solids: structure and properties, 1st edn. Pergamon Press, OxfordGoogle Scholar
  26. Gibson LJ, Ashby MF (1997) Cellular solids: structure and properties, 2nd edn. Cambridge University Press, Cambridge, UKCrossRefGoogle Scholar
  27. Gorb S, Speck T (2017) Biological and biomimetic materials and surfaces. Beilstein J Nanotechnol 8:403–407CrossRefGoogle Scholar
  28. Gordon R, Losic D, Tiffany MA et al (2009) The glass menagerie: diatoms for novel applications in nanotechnology. Trends Biotechnol 27(2):116–127CrossRefGoogle Scholar
  29. Grunenfelder LK, Herrera S, Kisailus D (2014) Crustacean-derived biomimetic components and nanostructured composites. Small 10:3207–3232CrossRefGoogle Scholar
  30. Grunenfelder LK, Milliron G, Herrera S et al (2018) Ecologically driven ultrastructural and hydrodynamic designs in stomatopod cuticles. Adv Mater 30:1705295CrossRefGoogle Scholar
  31. Gu GX, Su I, Sharma S, Voros JL, Qin Z, Markus J, Buehler MJ (2016) Three-dimensional-printing of bio-inspired composites. J Biomech Eng 138(2):0210061–02100616Google Scholar
  32. Guiducci L, Fratzl P, Bréchet YJM, Dunlop JWC (2014) Pressurized honeycombs as soft-actuators: a theoretical study. J R Soc Interface 11(101):20141031CrossRefGoogle Scholar
  33. Guiducci L, Razghandi K, Bertinetti L, Turcaud S et al (2016) Honeycomb actuators inspired by the unfolding of ice plant seed capsules. PLoS One 11(11):e0163506CrossRefGoogle Scholar
  34. Hamm CE, Merkel R, Springer O et al (2003) Architecture and material properties of diatom shells provide effective mechanical protection. Nature 421:841–843CrossRefGoogle Scholar
  35. Hench LL, Thompson I (2010) Twenty-first century challenges for biomaterials. J R Soc Interface 7(Suppl 4):S379–S391Google Scholar
  36. Heng L, Meng X, Wang B et al (2013) Bioinspired design of honeycomb structure interfaces with controllable water adhesion. Langmuir 29:9491–9498CrossRefGoogle Scholar
  37. Huang FY, Yan BW, Yang DU (2002) The effects of material constants on the micropolar elastic honeycomb structure with negative Poisson’s ratio using the finite element method. Eng Comput 19:742–763CrossRefGoogle Scholar
  38. Huang G, Li F, Zhao X, Yufei Ma Y et al (2017) Functional and biomimetic materials for engineering of the three-dimensional cell microenvironment. Chem Rev 117(20):12764–12850CrossRefGoogle Scholar
  39. Huss JC, Fratzl P, Dunlop JWC, Merritt DJ et al (2019) Protecting offspring against fire: lessons from banksia seed pods. Front Plant Sci 10:283CrossRefGoogle Scholar
  40. Jammalamadaka U, Tappa K (2018) Recent advances in biomaterials for 3D printing and tissue engineering. J Funct Biomater 9(1):22CrossRefGoogle Scholar
  41. Khan F, Tanaka M (2018) Designing smart biomaterials for tissue engineering. Int J Mol Sci 19(1):17CrossRefGoogle Scholar
  42. Ling S, Qin Z, Li C, Huang W, Kaplan DL, Buehler MJ (2017) Polymorphic regenerated silk fibers assembled through bioinspired spinning. Nat Commun 8:1387CrossRefGoogle Scholar
  43. Losic D, Mitchell JG, Voelcker NH (2009) Diatomaceous lessons in nanotechnology and advanced materials. Adv Mater 21:2947–2958CrossRefGoogle Scholar
  44. Masters IG, Evans KE (1996) Models for the elastic deformation of honeycombs. Compos Struct 35:403–422CrossRefGoogle Scholar
  45. Mayer G (2005) Rigid biological systems as models for synthetic composites. Science 310:1144–1147CrossRefGoogle Scholar
  46. Mayer G, Sarikaya M (2002) Rigid biological composite materials: structural examples for biomimetic design. Exp Mech 42:395–403CrossRefGoogle Scholar
  47. Nguyen PQ, Courchesne NMD, Duraj-Thatte A, Praveschotinunt P, Joshi NS (2018) Engineered living materials: prospects and challenges for using biological systems to direct the assembly of smart materials. Adv Mater 30(19):e1704847CrossRefGoogle Scholar
  48. Nosonovsky M, Bhushan B (2008) Multiscale dissipative mechanisms and hierarchical surfaces: friction, superhydrophobicity, and biomimetics. Springer, GermanyCrossRefGoogle Scholar
  49. Pan Z, Cheng F, Boxin Zhao B (2017) Bio-inspired polymeric structures with special wettability and their applications: an overview. Polymers (Basel) 9(12):725CrossRefGoogle Scholar
  50. Peeters M, Patricia Linton P, Araida Hidalgo-Bastida A (2019) Bioinspired materials 2018: conference report. Biomimetics (Basel) 4(1):4CrossRefGoogle Scholar
  51. Perera AS, Coppens MO (2019) Re-designing materials for biomedical applications: from biomimicry to nature-inspired chemical engineering. Philos Trans A Math Phys Eng Sci 377(2138):20180268CrossRefGoogle Scholar
  52. Poladian L, Wickham S, Lee K et al (2009) From photonic crystals and its suppression in butterfly scales. J R Soc Interface 6:S233–S242CrossRefGoogle Scholar
  53. Poppinga S, Nestle N, Šandor A et al (2017) Hygroscopic motions of fossil conifer cones. Sci Rep 7(1):40302CrossRefGoogle Scholar
  54. Przekora A (2019) Current trends in fabrication of biomaterials for bone and cartilage regeneration: materials modifications and biophysical stimulations. Int J Mol Sci 20(2):435CrossRefGoogle Scholar
  55. Quintana Alonso I, Fleck (2009) The damage tolerance of a sandwich panel containing a cracked honeycomb core. Appl Mech 76:061003-1–061003-8Google Scholar
  56. Schaffner M, Faber JA, Pianegonda L, Patrick A, Rühs P et al (2018) 3D printing of robotic soft actuators with programmable bioinspired architectures. Nat Commun 9:878CrossRefGoogle Scholar
  57. Sen D, Buehler MJ (2011) Structural hierarchies define toughness and defect-tolerance despite simple and mechanically inferior brittle building blocks. Sci Rep 1:35CrossRefGoogle Scholar
  58. Si Y, Dong Z, Lei Jiang L (2018) Bioinspired designs of superhydrophobic and superhydrophilic materials. ACS Cent Sci 4(9):1102–1112CrossRefGoogle Scholar
  59. Speck O, Speck T (2019) An overview of bioinspired and biomimetic self-repairing materials. Biomimetics (Basel) 4(1):26CrossRefGoogle Scholar
  60. Sterrenburg FAS, Tiffanz MA, del Castillo MEM (2005) Valve morphogenesis in the diatom genus Pleurosigma W. Smith (Bacillariophyceae): nature’s alternative sandwich. J Nanosci Nanotechnol 5:140–145CrossRefGoogle Scholar
  61. Terracciano M, De Stefano L, Ilaria Rea I (2018) Diatoms green nanotechnology for biosilica-based drug delivery systems. Pharmaceutics 10(4):242CrossRefGoogle Scholar
  62. Vrieling EG, Sun Q, Tian M et al (2007) Salinity-dependent diatom biosilicification implies an important role of external ionic strength. Proc Natl Acad Sci U S A 104:10441–10446CrossRefGoogle Scholar
  63. Warren WE, Kraynik AM (1987) The linear elastic response of twodimensional spatially periodic cellular materials. Mech Mater 6:27–37CrossRefGoogle Scholar
  64. Wat A, Lee JI, Ryu CW, Gludovatz B et al (2019) Bioinspired nacre-like alumina with a bulk-metallic glass-forming alloy as a compliant phase. Nat Commun 10:961CrossRefGoogle Scholar
  65. Wei L, McDonald AG (2016) A review on grafting of biofibers for biocomposites. Materials (Basel) 9(4):303CrossRefGoogle Scholar
  66. Wood J (2019) Bioinspiration in fashion – a review. Biomimetics (Basel) 4(1):16CrossRefGoogle Scholar
  67. Yamanaka S, Yano R, Usami H et al (2008) Optical properties of diatom silica frustule with special reference to blue light. J Appl Phys 103:074701CrossRefGoogle Scholar
  68. Yang MY, Huang JS, Hu JW (2008) Elastic buckling of hexagonal honeycombs with dual imperfections. Compos Struct 82:326–335CrossRefGoogle Scholar
  69. Yang K, Zhou C, Fan H, Yujiang Fan Y et al (2018) Bio-functional design, application and trends in metallic biomaterials. Int J Mol Sci 19(1):24CrossRefGoogle Scholar
  70. Yang X, Zhou T, Zwang TJ et al (2019) Bioinspired neuron-like electronics. Nat Mater 18:510–517CrossRefGoogle Scholar
  71. Yaraghi NA, Kisailus D (2018) Biomimetic structural materials: inspiration from design and assembly. Annu Rev Phys Chem 69(1):23–57CrossRefGoogle Scholar
  72. Zhang Z, Zhang YW, Gao H (2011) On optimal hierarchy of load-bearing biological materials. Proc Biol Sci 278(1705):519–525CrossRefGoogle Scholar
  73. Zhang Q, Yang X, Li P (2015) Bioinspired engineering of honeycomb structure – using nature to inspire human innovation. Prog Mater Sci 74:332–400CrossRefGoogle Scholar
  74. Zhou J, Li J, Du X, Xu B (2017) Supramolecular biofunctional materials. Biomaterials 129:1–27CrossRefGoogle Scholar
  75. Zlotnikov I, Zolotoyabko E, Fratzl P (2017) Nano-scale modulus mapping of biological composite materials: theory and practice. Prog Mater Sci 87:292–320CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  • Hermann Ehrlich
    • 1
  1. 1.Institute of Electronic and Sensor MaterialsTU Bergakademie FreibergFreibergGermany

Personalised recommendations