The Circle: Biomineralization-Demineralization-Remineralization in Nature

  • Hermann Ehrlich
Part of the Biologically-Inspired Systems book series (BISY, volume 13)


The mineral-biomacromolecule cycle can be divided into three fundamental stages namely: (i) biomineralization; (ii) demineralization and (iii) remineralization occurring in various organisms and environments. It is obvious that equilibrium between demineralization and biomineralization is required. Therefore, in the biomineralogy these two processes should be considered as two sides of the same coin. Interestingly, the reagents of both natural and artificial origins, mechanisms and principles of chemical dissolution that have been reported to exist in natural environments discussed in this chapter comparatively.


  1. Ankel WE (1937) Wie bohrt Natica? Biol Zentr 57:75–82Google Scholar
  2. Blake JA, Evans JW (1973) Polydora and related genera as borers in mollusc shells and other calcareous substrates (Polychaeta: Spionidae). Veliger 15:235–249Google Scholar
  3. Brunner E, Richthammer P, Ehrlich H et al (2009) Chitin–based organic networks – an integral part of cell wall biosilica from the diatom Thalassiosira pseudonana. Angew Chem Int Ed 48:9724–9727CrossRefGoogle Scholar
  4. Bütschli OZ (1901) Einige Beobachtungen über die Kiesel- und Kalknadeln von Spongien. Wiss Zool 59:235Google Scholar
  5. Calcinai B, Cerrano C, Sara M (2000) Borino sponges (Porifera. Demospongiae) from the Indian Ocean. Ital J Zool 67:203–219CrossRefGoogle Scholar
  6. Carriker MR (1961) Comparative functional morphology of boring mechanisms in gastropods. Am Zool 1:263–266CrossRefGoogle Scholar
  7. Carriker MR (1978) Ultrastructural analysis of dissolution of shell of the bivalve Mytilus edulis by the accessory boring organ of the gastropod Urosalpinx cinerea. Mar Biol 48:105–134CrossRefGoogle Scholar
  8. Carriker MR, Smith EH (1969) Comparative calcibiocavitology: summary and conclusions. Am Zool 9:1011–1020CrossRefGoogle Scholar
  9. Carriker MR, Williams LG (1978) Chemical mechanism of shell penetration by Urosalpinx: an hypothesis. Malacologia 17:142–156Google Scholar
  10. Carriker MR, van Zandt D, Charlton G (1967) Gastropod urosalpinx: pH of accessory boring organ while boring. Science 158:920–922CrossRefGoogle Scholar
  11. Carriker MR, Schaadt JG, Peters V (1974) Analysis by slow-motion picture photography and scanning electron microscopy of radular function in Urosalpinx cinerea follyensis (Muricidae, Gastropoda) during shell penetration. Mar Biol 25:63–76CrossRefGoogle Scholar
  12. Cha JN, Shimizu K, Zhou Y et al (1999) Silicatein filaments and subunits from a marine sponge direct the polymerization of silica and silicones in vitro. Proc Natl Acad Sci U S A 96:361CrossRefGoogle Scholar
  13. Chave KE (1984) Physics and chemistry of biomineralization. Annu Rev Earth Planet Sci 12:293–305CrossRefGoogle Scholar
  14. Chisholm J (2000) Calcification by crustose coralline algae on the Northern Great Barrier Reef, Australia. Limnol Oceanogr 45:1476–1484CrossRefGoogle Scholar
  15. Cobb WR (1969) Penetration of calcium carbonate substrates by the boring sponge. Cliona Am Zool 9:783–790CrossRefGoogle Scholar
  16. Collins MJ, Nielsen-Marsh CM, Hiller J et al (2002) The survival of organic matter in bone: a review. Archaeometry 44:383–394CrossRefGoogle Scholar
  17. Croce G, Frache A, Milanesio M et al (2004) Fibre diffraction study of spicules from marine sponges. Biophys J 86:526CrossRefGoogle Scholar
  18. Cuif J-P, Dauphin Y, Gautret P (1999) Compositional diversity of soluble mineralizing matrices in some recent coral skeletons compared to fine-scale growth structures of fibres: discussion of consequences for biomineralization and diagenesis. Int J Earth Sci 88:582–592CrossRefGoogle Scholar
  19. Davidson TM, Altieri AH, Ruiz GM, Torchin ME (2018) Degradation of carbonate skeletal material and rocky limestone coasts in all marine and some freshwater environments. Ecol Lett 21:422–438CrossRefGoogle Scholar
  20. Ehrlich HL (1996) Geomicrobiology. Marcel Dekker, New YorkGoogle Scholar
  21. Ehrlich H (2011) Silica biomineralization in sponges. In: Reitner J, Thiel V (eds) Encyclopedia of geobiology. Springer, Netherlands, pp 796–808CrossRefGoogle Scholar
  22. Ehrlich H, Ereskovsky A, Drozdov A et al (2006) A modern approach to demineralisation of spicules in the glass sponges (Hexactinellida: Porifera) for the purpose of extraction and examination of the protein matrix. Russ J Mar Biol 32:186–193CrossRefGoogle Scholar
  23. Ehrlich H, Koutsoukos P, Demadis K et al (2008) Principles of demineralization: modern strategies for the isolation of organic frameworks. Part I. Common definitions and history. Micron 39:1062–1091CrossRefGoogle Scholar
  24. Ehrlich H, Koutsoukos P, Demadis K et al (2009) Principles of demineralization: modern strategies for the isolation of organic frameworks. Part II. Decalcification. Micron 40:169–193CrossRefGoogle Scholar
  25. Ehrlich H, Demadis K, Pokrovsky O et al (2010) Modern views on desilicification: biosilica and abiotic silica dissolution in natural and artificial environments. Chem Rev 110:4656–4689CrossRefGoogle Scholar
  26. Ehrlich H, Motylenko M, Sundareshwar PV et al (2016) Multiphase biomineralization: enigmatic invasive siliceous diatoms produce crystalline calcite. Adv Funct Mater 26:2503–2510CrossRefGoogle Scholar
  27. Ferraris CF (1999) Alkali-silica reaction and high performance concrete, NIST Internal Report No. 5742: National Institute of Standards and Technology, USAGoogle Scholar
  28. Fine M, Tchernov D (2007) Scleractinian coral species survive and recover from decalcification. Science 315:1811CrossRefGoogle Scholar
  29. Garcia-Pichel F (2006) Plausible mechanisms for the boring on carbonates by microbial phototrophs. Sediment Geol 185:205–213CrossRefGoogle Scholar
  30. Golubev SV, Pokrovsky OS (2006) Experimental study of the effect of organic ligands on diopside dissolution kinetics. Chem Geol 235:377–389CrossRefGoogle Scholar
  31. Golubev SV, Bauer A, Pokrovsky OS (2006) Effect of pH and organic ligands on the kinetics of smectite dissolution at 25 8C. Geochim Cosmochim Acta 70:4436–4451CrossRefGoogle Scholar
  32. Haigler SA (1969) Boring mechanism of Polydora websteri inhabiting Crassostrea virginica. Am Zool 9:821–828CrossRefGoogle Scholar
  33. Johnston IS (1980) The ultrastructure of skeletogenesis in. hermatypic corals. Int Rev Cytol 67:171–214CrossRefGoogle Scholar
  34. Jordan G, Pokrovsky OS, Guichet X et al (2007) Organic and inorganic ligand effects on magnesite dissolution at 100 8C and pH 5–10. Chem Geol 242:484–496CrossRefGoogle Scholar
  35. Kalinowski BE, Liermann LJ, Brantley SL et al (2000) X-ray photoelectron evidence for bacteria-enhanced dissolution of X-ray photoelectron evidence for bacteria-enhanced dissolution of hornblende. Geochimi Cosmochim Acta 64(8):1331–1343CrossRefGoogle Scholar
  36. Kawaguti S, Sakumoto D (1948) The effect of light on the calcium deposition of corals. Bull Oceanogr Inst Taiwan 4:65–70Google Scholar
  37. Kono K, Yoshida Y, Watanabe M et al (1992) Arch Environ Contam Toxicol 22:414CrossRefGoogle Scholar
  38. Kreitzman SN, Fritz ME (1970) Demineralization of bone by phosphoprotein phosphatase. J Dent Res 49:1509–1512CrossRefGoogle Scholar
  39. Kreitzman SN, Irving S, Navia JM et al (1969) Enzymatic release of phosphate from rat molar enamel by phosphoprotein phosphatase. Nature 223:520–521CrossRefGoogle Scholar
  40. Le Cadre V, Debenay J-P, Lesourd M (2003) J Foraminiferal Res 33:1–9CrossRefGoogle Scholar
  41. Liu P-J, Hsieh H-L (2000) Burrow architecture of the spionid polychaete Polydora villosa in the corals Montipora and porites. Zool Stud 39:47–54Google Scholar
  42. Liu XY, Lim SW (2003) Templating and supersaturation-driven anti-templating: principles of biomineral architecture. J Am Chem Soc 125:888–895CrossRefGoogle Scholar
  43. Lunz GR (1940) The annelid worm, Polydora, as an oyster pest. Science 92:310CrossRefGoogle Scholar
  44. Meyran JC, Graf F, Fournie J (1987) Carbonic anhydrase activity in a calcium-mobilizing epithelium of the crustacean Orchestia cavimana during molting. Histochemistry 5:419–429CrossRefGoogle Scholar
  45. Müller WEG, Boreiko A, Wang X et al (2007) Gene 395:62CrossRefGoogle Scholar
  46. Neel EAA, Aljabo A, Strange A, Ibrahim S, Coathup M et al (2016) Demineralization–remineralization dynamics in teeth and bone. Int J Nanomedicine 11:4743–4763CrossRefGoogle Scholar
  47. Pokrovsky OS, Schott J (2001) Kinetics and mechanism of dolomite dissolution in neutral to alkaline solutions revisited. Am J Sci 301:597–626CrossRefGoogle Scholar
  48. Pokrovsky OS, Schott J, Castillo A (2005) Kinetics of brucite dissolution at 25 C in the presence of organic and inorganic ligands and divalent metals. Geochim Cosmochim Acta 69:905–918CrossRefGoogle Scholar
  49. Pomponi SA (1980) Cytological mechanisms of calcium carbonate excavation by boring sponges. Int Rev Cytol 65:301–319CrossRefGoogle Scholar
  50. Puverel S, Tambuette E, Pereira-Mouries L et al (2005) Soluble organic matrix of two Scleractinian corals: partial and comparative analysis. Comp Biochem Phisiol Part B 141:480–487CrossRefGoogle Scholar
  51. Risk JM, Samarco WP, Dinger NE (1995) Bioerosion in Acropora across the continental shelf of the Great Barrier Reef. Coral Reefs 14:79–86CrossRefGoogle Scholar
  52. Scheele CW (1771) Sämmtliche physische und chemische Werke. Nach dem Tode des Verfassers gesammelt und in deutscher Sprache herausgegeben von Sigismund Friedrich Hermbstädt, 2 Vols., Unchanged reprint of the 1793 edition, Niederwalluf, 1971, vol 2, pp 3–31 (first publ. 1771)Google Scholar
  53. Schiemenz P (1891) Wie bohrt Natica die Muscheln an? Mitt Zool Sta Neapel 10:153–169Google Scholar
  54. Schönberg CHL (2002a) Pione lampa, a bioeroding sponge in a worm reef. Hydrobiologia 482:49–68CrossRefGoogle Scholar
  55. Schönberg CHL (2002b) Substrate effects on the bioeroding demosponge Cliona orientalis. 1. Bioerosion rates. Mar Ecol 23(4):313–326CrossRefGoogle Scholar
  56. Schönberg CHL (2006) Growth and erosion of the zooxanthellate Australian bioeroding sponge Cliona orientalis are enchanced in light. In: Proceedings of the 10th international coral reef symposium, pp 168–174Google Scholar
  57. Schröder HC, Krasko A, Le Pennec G et al (2003) Silicase, an enzyme which degrades biogenous amorphous silica: contribution to the metabolism of silica deposition in the demosponge Suberites domuncula. Prog Mol Subcell Biol 33:250Google Scholar
  58. Schröder HC, Boreiko A, Korzhev M et al (2006) Co-expression and functional interaction of silicatein with galectin, matrix-guided formation of siliceous spicules in the marine demosponge Suberites domuncula. J Biol Chem 281:12001CrossRefGoogle Scholar
  59. Skinner HCW (2005) Biominerals. Mineral Mag 69(5):621–641CrossRefGoogle Scholar
  60. Spierings GACM (1991) Compositional effects in the dissolution of multicomponent silicate glasses in aqueous HF solutions. J Mater Sci 26:3329CrossRefGoogle Scholar
  61. Spierings GACM (1993) Wet chemical etching of silicate glasses in hydrofluoric acid based solutions. J Mater Sci 28:6261CrossRefGoogle Scholar
  62. Stanley GD Jr (2003) The evolution of modern corals and their early history. Earth-Sci Rev 60:195–225CrossRefGoogle Scholar
  63. Tentori E, Allemand D (2006) Biol Bull 211:193–202CrossRefGoogle Scholar
  64. Tohda H, Yanagisawa T, Tanaka N, Takuma S (1990) Growth and fusion of apatite crystals in the remineralized enamel. J Electron Microsc 39:238–244Google Scholar
  65. Travis DF, Francois CJ, Bonar LC et al (1967) Comparative studies of the organic matrices of invertebrate mineralized tissues. J Ultrastruct Res 18(5):519–550CrossRefGoogle Scholar
  66. Tresgurres M, Katz S, Rouse GW (2013) How to get into bones: proton pump and carbonic anhydrase in Osedax boneworms. Proc R Soc B 280:20130625CrossRefGoogle Scholar
  67. Troschel FH (1854) Über die Speichel von Dolium galea. J Prakt Chem 63:170–179CrossRefGoogle Scholar
  68. Vacelet J (1981) Algal-sponge symbiosis in the coral reefs of New Caledonia: a morphological study. In: Gomez ED et al (eds), The Reef and Man. Proceedings of the 4th International Coral Reef Symp, Manila 2, University of the Philippines, Quezon City, PhilippinesGoogle Scholar
  69. Venec-Peyre M-T (1987) Boring foraminifera in French Polynesian coral reefs. Coral Reefs 5:205–212CrossRefGoogle Scholar
  70. Venec-Peyre M-T (1996) Bioeroding foraminifera: a review. Mar Micropaleontol 28:19–30CrossRefGoogle Scholar
  71. Watabe N, Bernhardt AM, Kingsley RJ et al (1986) Trans Am Microsc Soc 105:311–318CrossRefGoogle Scholar
  72. Weaver JC, Morse DE (2003) Molecular biology of demosponge axial filaments and their roles in biosilicification. Microsc Res Tech 62:356CrossRefGoogle Scholar
  73. Williams JA, Margolis SV (1974) Sipunculid burrows in coral reef: evidence for chemical and mechanical excavation. Pac Sci 28:357–359Google Scholar
  74. Wisshak M, Rüggeberg A (2006) Colonisation and bioerosion of experimental substrates by benthic foraminiferans from euphotic to aphtotic depths (Kosterfjord. SW Sweden). Facies 52:1–17CrossRefGoogle Scholar
  75. Wisshak M, Gettidis M, Freiwald A et al (2005) Bioerosion along a bathymetric gradient in a cold-temperate setting (Koster fjord, SW Sweden): an experimental study. Facies 51:93–117CrossRefGoogle Scholar
  76. Wysokowski M, Jesionowski T, Ehrlich H (2018) Biosilica as source for inspiration in biological materials science. Am Mineral 103(5):665–691CrossRefGoogle Scholar
  77. Ziegler A, Weihrauch D, Hagedorn M et al (2004) Expression and polarity reversal of V-type H+-ATPase during the mineralization-demineralization cycle in Porcellio scaber sternal epithelial cells. J Exp Biol 207:1749–1756CrossRefGoogle Scholar
  78. Zundelevich A, Lazar B, Ilan M (2007) Chemical versus mechanical bioerosion of coral reefs by boring sponges–lessons from Pione cf. vastifica. J Exp Biol 210:91–96CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  • Hermann Ehrlich
    • 1
  1. 1.Institute of Electronic and Sensor MaterialsTU Bergakademie FreibergFreibergGermany

Personalised recommendations