Advertisement

Extreme Biomimetics

  • Hermann Ehrlich
Chapter
Part of the Biologically-Inspired Systems book series (BISY, volume 13)

Abstract

The origins of extreme biomineralization are found in the first ancestral unicellular organisms that evolved under the harsh environmental conditions of ancient oceans. Such conditions also allowed adaptation of unique extremophilic and polyextremophilic biomineralizers, which are still found today Psychrophilic, thermophilic, anaerobic, alkaliphilic, acidophilic, and halophilic conditions, as well as forced biomineralization arising in environments with very high or toxic metal ion concentrations are considered. In most cases the mechanisms of these special biomineralogical phenomena remain unknown. Nevertheless, extreme biomineralization provides crucial information for progression in extreme biomimetics. This exciting area of modern research could be the next step in creating the next generation of composites using organic-templating materials of marine invertebrates origin under biologically extreme laboratory conditions.

References

  1. Amils R, Ellis-Evans C, Hinghofer-Szalkay HG (2007) Life in extreme environments. Springer, DordrechtCrossRefGoogle Scholar
  2. Andreeßen C, Steinbüchel A (2019) Recent developments in non-biodegradable biopolymers: precursors, production processes, and future perspectives. Appl Microbiol Biotechnol 103(1):143–157CrossRefGoogle Scholar
  3. Arndt CE, Swadling KM (2006) Crustacea in Arctic and Antarctic Sea ice: distribution, diet and life history strategies. Adv Mar Biol 51(6):197–315CrossRefGoogle Scholar
  4. Assmy P, Smetacek V, Montresor M, Klaas C et al (2013) Thick-shelled, grazer-protected diatoms decouple ocean carbon and silicon cycles in the iron-limited Antarctic circumpolar current. Proc Natl Acad Sci 110(51):20633–20638CrossRefGoogle Scholar
  5. Cary SC, Shank T, Stein J (1998) Worms bask in extreme temperatures. Nature 391:545–546CrossRefGoogle Scholar
  6. Chu JWF, Leys SP (2010) High resolution mapping of community structure in three glass sponge reefs (Porifera, Hexactinellida). Mar Ecol Prog Ser 417:97–113CrossRefGoogle Scholar
  7. Clark MS, Dupont S, Rossetti H, Burns G, Thorndyke MC, Peck LS (2007) Delayed arm regeneration in the Antarctic brittle star Ophionotus victoriae. Aquat Biol 1:45–53CrossRefGoogle Scholar
  8. Ehrlich H (2010) Chitin and collagen as universal and alternative templates in biomineralization. Int Geol Rev 52(7–8):661–699CrossRefGoogle Scholar
  9. Ehrlich H (ed) (2017) Extreme biomimetics. Springer, BaselGoogle Scholar
  10. Ehrlich H, Simon P, Motylenko M et al (2013) Extreme biomimetics: formation of zirconium dioxide nanophase using chitinous scaffolds under hydrothermal conditions. J Mater Chem B 1:5092–5099CrossRefGoogle Scholar
  11. Ehrlich H, Wysokowski M, Żółtowska–Aksamitowska S, Petrenko I, Jesionowski T (2018) Collagens of poriferan origin. Mar Drugs 16:79CrossRefGoogle Scholar
  12. Flores H, van Franeker JA, Siegel V, Haraldsson M et al (2012) The association of Antarctic krill Euphausia superba with the under-ice habitat. PLoS One 7(2):e31775CrossRefGoogle Scholar
  13. Ishikawa H, Tsukada M, Toizume I, Konda A, Hirabayashi K (1972) DSC thermograms of silk fibroin. Sen I Gakkaishi 28:91–98CrossRefGoogle Scholar
  14. Jesionowski T, Norman M, Żółtowska–Aksamitowska S, Petrenko I, Yoseph Y, Ehrlich H (2018) Marine spongin: naturally prefabricated 3D scaffold–based biomaterial. Mar Drugs 16:88CrossRefGoogle Scholar
  15. Juniper SK, Jonasson IR, Tunnicliffe V, Southward AJ (1992) Influence of a tube-building polychaete on hydrothermal chimney mineralization. Geology 20:895–898CrossRefGoogle Scholar
  16. Kobatake E, Onoda K, Yanagida Y, Aizawa M (2000) Design and gene engineering synthesis of an extremely thermostable protein with biological activity. Biomacromolecules 1(3):382–386CrossRefGoogle Scholar
  17. Köll P, Metzger J (1979) Nachweis von Acetamid Beim Thermischen Abbau von Chitin. Zeitschift Leb unf -forsch 113:111–113CrossRefGoogle Scholar
  18. Köll P, Borchers G, Metzger JO (1991) Thermal degradation of chitin and cellulose. J Anal Appl Pyrolysis 19:119–129CrossRefGoogle Scholar
  19. Kumar S, Tsai CJ, Nussinov R (2000) Factors enhancing protein thermostability. Protein Eng 13(3):179–191CrossRefGoogle Scholar
  20. Latza V, Guerette PA, Ding D, Amini S et al (2015) Multi-scale thermal stability of a hard thermoplastic protein-based material. Nat Commun 6:8313CrossRefGoogle Scholar
  21. Le Bris N, Gaill F (2007) How does the annelid Alvinella pompejana deal with an extreme hydrothermal environment? Rev Environ Sci Biotechnol 6(1–3):197–221CrossRefGoogle Scholar
  22. Lee WK, Kim SJ, Hou BK, Van Dover CL, Ju SJ (2019) Population genetic differentiation of the hydrothermal vent crab Austinograea alayseae (Crustacea: Bythograeidae) in the Southwest Pacific Ocean. PLoS One 14(4):e0215829CrossRefGoogle Scholar
  23. Luther GW, Rozan TF, Taillefert M, Nuzzio DB et al (2001) Chemical speciation drives hydrothermal vent ecology. Nature 410:813–816CrossRefGoogle Scholar
  24. Moussout H, Ahla H, Aazza M, Bourakhouadar M (2016) Kinetics and mechanism of the thermal degradation of biopolymers chitin and chitosan using thermogravimetric analysis. 130:1–9Google Scholar
  25. Sleight VA, Thorne MAS, Peck LS, Clark MS (2015) Transcriptomic response to Shell damage in the Antarctic clam, Laternula elliptica: time scales and spatial localisation. Mar Genomics 20:45–55CrossRefGoogle Scholar
  26. Stawski D, Rabiej S, Herczyńska L, Draczyński Z (2008) Thermogravimetric analysis of chitins of different origin. J Therm Anal Calorim 93:489–494CrossRefGoogle Scholar
  27. Suzuki Y, Kopp R, Kogure T, Suga A et al (2006) Sclerite formation in the hydrothermal-vent “scaly-foot” gastropod—possible control of iron sulfide biomineralization by the animal. Earth Planet Sci Lett 242(1–2):39–50CrossRefGoogle Scholar
  28. Szatkowski T, Siwińska–Stefańska K, Wysokowski M, Stelling AL, Joseph Y, Ehrlich H, Jesionowski T (2017) Immobilization of titanium(IV) oxide onto 3D spongin scaffolds of marine sponge origin according to extreme biomimetics principles for removal of C.I. Basic Blue 9. Biomimetics 2(2017):4CrossRefGoogle Scholar
  29. Szatkowski T, Kopczyński K, Motylenko M, Borrmann H et al (2018) Extreme biomimetics: carbonized 3D spongin scaffold as a novel support for nanostructured manganese oxide (IV) and its electrochemical applications. Nano Res 11(8):4199–4214.  https://doi.org/10.1007/s12274-018-2008-xCrossRefGoogle Scholar
  30. Taylor ML, Roterman CN (2017) Invertebrate population genetics across Earth’s largest habitat: the deep-sea floor. Mol Ecol 26(19):4872–4896CrossRefGoogle Scholar
  31. Warén A, Bengtson S, Goffredi SK, Van Dover CL (2003) A hot-vent gastropod with Iron sulfide dermal Sclerites. Science 302:1007CrossRefGoogle Scholar
  32. Watanabe HK, Chen C, Marie DP, Takai K, Fujikura K, Chan BKK (2018) Phylogeography of hydrothermal vent stalked barnacles: a new species fills a gap in the Indian Ocean ‘dispersal corridor’ hypothesis. R Soc Open Sci 5(4):172408CrossRefGoogle Scholar
  33. Wysokowski M, Behm T, Born R, Bazhenov VV, Meissner H, Richter G, Szwarc-Rzepka K, Makarova A, Vyalikh D, Schupp P, Jesionowski T, Ehrlich H (2013a) Preparation of chitin-silica composites by in vitro silicification of two-dimensional Ianthella basta demosponge chitinous scaffolds under modified Stöber conditions. Mater Sci Eng C 33(7):3935–3941CrossRefGoogle Scholar
  34. Wysokowski M, Piasecki A, Bazhenov VV, Paukszta D et al (2013b) Poriferan chitin as the scaffold for nanosilica deposition under hydrothermal synthesis conditions. J Chitin Chitosan Sci 1(1):26–33CrossRefGoogle Scholar
  35. Wysokowski M, Motylenko M, Bazhenov VV et al (2013c) Poriferan chitin as a template for hydrothermal zirconia deposition. Front Mater Sci 7:248–260CrossRefGoogle Scholar
  36. Wysokowski M, Motylenko M, Stöcker H, Bazhenov VV et al (2013d) An extreme biomimetic approach: hydrothermal synthesis of β-chitin/ZnO nanostructured composites. J Mater Chem B 1(46):6469–6476CrossRefGoogle Scholar
  37. Wysokowski M, Motylenko M, Walter J et al (2014) Synthesis of nanostructured chitin–hematite composites under extreme biomimetic conditions. RSC Adv 4(106):61743–61752CrossRefGoogle Scholar
  38. Wysokowski M, Motylenko M, Beyer J et al (2015a) Extreme biomimetic approach for developing novel chitin-GeO2 nanocomposites with photoluminescent properties. Nano Res 8(7):2288–2301CrossRefGoogle Scholar
  39. Wysokowski M, Petrenko I, Motylenko M, Langer E et al (2015b) Renewable chitin from marine sponge as a thermostable biological template for hydrothermal synthesis of hematite nanospheres using principles of extreme biomimetics. Bioinspired Mater 1:12–22Google Scholar
  40. Xu A-W, Ma Y, Cölfen (2007) Biomimetic Mineralization. J Mater Chem 17(5):415–449CrossRefGoogle Scholar
  41. Yoshimura M, Suchanek W (1997) In situ fabrication of morphology-controlled advanced ceramic materials by soft solution processing. Solid State Ionics 98(3–4):197–208CrossRefGoogle Scholar
  42. Zbinden M, Le Bris N, Compère P et al (2003) Mineralogical gradients associated with Alvinellids at deep-sea hydrothermal vents. Deep-Sea Res I 50(2):269–280CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  • Hermann Ehrlich
    • 1
  1. 1.Institute of Electronic and Sensor MaterialsTU Bergakademie FreibergFreibergGermany

Personalised recommendations