Advertisement

Chitin

  • Hermann Ehrlich
Chapter
Part of the Biologically-Inspired Systems book series (BISY, volume 13)

Abstract

Chitin of marine invertebrate’s origin (cephalopod molluscs, crustaceans) has been traditionally well studied as the main source for manufacturing of its derivate chitosan. Nowadays, the trend is directed to naturally prefabricated three dimensional (3D) chitinous scaffolds which can be simply isolated from diverse marine demosponges. Such ready to use constructs have been reported as applicable as adsorbents, scaffolds for development of composite materials and biocompatible matrices for tissue engineering of diverse human mesenchymal stromal cells. This chapter includes huge list of references on chitin properties and applications including recently published books and reviews.

References

  1. Abe M, Takahashi M, Tokura S et al (2004) Cartilage-scaffold composites produced by bioresorbable β-chitin sponge with cultured rabbit chondrocytes. Tissue Eng 10:585–594CrossRefGoogle Scholar
  2. Aerts JMFG (1996) A human chitinase, its recombinant production, its use for decomposing chitin, its use in therapy of prophylaxis against infection diseases, WO/1996/040940Google Scholar
  3. Alvarez FJ (2014) The effect of chitin size, shape, source and purification method on immune recognition. Molecules 19(4):4433–4451CrossRefGoogle Scholar
  4. Anitha A, Sowmya S, Sudheesh Kumar PT et al (2014) Chitin and chitosan in selected biomedical applications. Prog Polym Sci 39:1644–1667CrossRefGoogle Scholar
  5. Arae K, Morita H, Unno H, Motomura K et al (2018) Chitin promotes antigen-specific Th2 cell-mediated murine asthma through induction of IL-33-mediated IL-1β production by DCs. Sci Rep 8:11721CrossRefGoogle Scholar
  6. Aranaz I, Mengibar M, Harris R, Panos I et al (2009) Functional characterization of chitin and chitosan. Curr Chem Biol 3(2):203–230Google Scholar
  7. Aranaz I, Acosta N, Civera C, Elorza B et al (2018) Cosmetics and cosmeceutical applications of chitin, chitosan and their derivatives. Polymers 10(2):213CrossRefGoogle Scholar
  8. Azuma K, Izumi R, Osaki T et al (2015) Chitin, chitosan, and its derivatives for wound healing: old and new materials. J Funct Biomater 6(1):104–142CrossRefGoogle Scholar
  9. Badwan AA, Rashid I, Al Omari MMH, Fouad H, Darras FH (2015) Chitin and chitosan as direct compression excipients in pharmaceutical applications. Mar Drugs 13(3):1519–1547CrossRefGoogle Scholar
  10. Bechman N, Ehrlich H, Eisenhofer G et al (2018) Anti-tumorigenic and anti-metastatic activity of the sponge-derived marine drugs Aeroplysinin-1 and Isofistularin-3 against Pheochromocytoma in vitro. Mar Drugs 16:172CrossRefGoogle Scholar
  11. Becker KL, Aimanianda V, Wang X, Gresnigt MS et al (2016) Aspergillus cell wall chitin induces anti- and proinflammatory cytokines in human PBMCs via the fc-γ receptor/Syk/PI3K pathway. MBio 7(3):e01823–e01815CrossRefGoogle Scholar
  12. Boot RG, Renkema GH, Strijland A et al (1995) Cloning of a cDNA encoding chitotriosidase, a human chitinase produced by macrophages. J Biol Chem 44:26252–26256CrossRefGoogle Scholar
  13. Brunner E, Ehrlich H, Schupp P et al (2009) Chitin-based scaffolds are an integral part of the skeleton of the marine demosponge Ianthella basta. J Struct Biol 168:539–547CrossRefGoogle Scholar
  14. Bueter CL, Specht CA, Levitz SM (2013) Innate sensing of chitin and chitosan. PLoS Pathog 9(1):e1003080CrossRefGoogle Scholar
  15. Collini FJ (1991) Invited comments. Eur J Plat Surg 14:209–210Google Scholar
  16. Coltelli MB, Cinelli P, Gigante V, Aliotta L et al (2019) Chitin nanofibrils in poly(lactic acid) (PLA) nanocomposites: dispersion and thermo-mechanical properties. Int J Mol Sci 20(3):504CrossRefGoogle Scholar
  17. Cruz-Baraza JA, Carballo JL, Rocha-Olivares A et al (2012) Integrative taxonomy and molecular phylogeny of genus Aplysina (Demospongiae: Verongida) from Mexican Pacific. PLoS One 7:e42049CrossRefGoogle Scholar
  18. Da Silva CA, Chalouni C, Williams A et al (2009) Chitin is a size-dependent regulator of macrophage TNF and IL-10 production. J Immunol 182:3573–3582CrossRefGoogle Scholar
  19. Da Silva CA, Pochard P, Lee CG, Elias JA (2010) Chitin particles are multifaceted immune adjuvants. Am J Respir Crit Care Med 182(12):1482–1491CrossRefGoogle Scholar
  20. Dworkin J (2018) Detection of fungal and bacterial carbohydrates: do the similar structures of chitin and peptidoglycan play a role in immune dysfunction? PLoS Pathog 14(10):e1007271CrossRefGoogle Scholar
  21. Ehrlich H (2010) Chitin and collagen as universal and alternative templates in biomineralization. Int Geol Rev 52(7–8):661–699CrossRefGoogle Scholar
  22. Ehrlich H (2013) Biomimetic potential of chitin-based composite biomaterials of poriferan origin. In: Ruys AJ (ed) Biomimetic biomaterials: structure and applications. Woodhead Publishing, Philadelphia, pp 47–67Google Scholar
  23. Ehrlich H (2018) Chitin of poriferan origin as a unique biological material. In: La Barre S, Bates SS (eds) Blue biotechnology: production and use of marine molecules, vol 2. Wiley–VCH, Verlag, Weinheim, pp 821–854CrossRefGoogle Scholar
  24. Ehrlich H, Worch H (2007) Sponges as natural composites: from biomimetic potential to development of new biomaterials. In: Hajdu E (ed) Porifera research: biodiversity, innovation & sustainability. Museu Nacional, Rio de JaneiroGoogle Scholar
  25. Ehrlich H, Krautter M, Hanke T et al (2007a) First evidence of the presence of chitin in skeletons of marine sponges. Part II. Glass sponges (Hexactinellida: Porifera). J Exp Zool (Mol Dev Evol) 308B:473–483CrossRefGoogle Scholar
  26. Ehrlich H, Maldonado M, Spindler K-D et al (2007b) First evidence of chitin as a component of the skeletal fibers of marine sponges. Part I. Verongidae (Demospongia: Porifera). J Exp Zool (Mol Dev Evol) 308B:347–356CrossRefGoogle Scholar
  27. Ehrlich H, Simon P, Carrillo–Cabrera W et al (2010a) Insights into chemistry of biological materials: newly discovered silica–aragonite–chitin biocomposites in demosponges. Chem Mater 22(4):1462–1471CrossRefGoogle Scholar
  28. Ehrlich H, Ilan M, Maldonado M et al (2010b) Three-dimensional chitin-based scaffolds from Verongida sponges (Demospongiae: Porifera). Part I. Isolation and identification of chitin. Int J Bol Macromol 47:132–140CrossRefGoogle Scholar
  29. Ehrlich H, Kaluzhnaya OV, Brunner E et al (2013a) Identification and first insights into the structure and biosynthesis of chitin from the freshwater sponge Spongilla lacustris. J. Struct Biol 183:474–483CrossRefGoogle Scholar
  30. Ehrlich H, Rigby JK, Botting JP et al (2013b) Discovery of 505-million-year old chitin in the basal demosponge Vauxia gracilenta. Sci Rep 3:3497CrossRefGoogle Scholar
  31. Ehrlich H, Kaluzhnaya OV, Tsurkan MV et al (2013c) First report on chitinous holdfast in sponges (Porifera). Proc R Soc B 280:20130339CrossRefGoogle Scholar
  32. Ehrlich H, Bazhenov VV, Debitus C et al (2017) Isolation and identification of chitin from heavy mineralized skeleton of Suberea clavata (Verongida: Demospongiae: Porifera) marine demosponge. Int J Biol Macromol 104:1706–1712CrossRefGoogle Scholar
  33. Ehrlich H, Shaala LA, Youssef DTA et al (2018) Discovery of chitin in skeletons of non–verongiid Red Sea demosponges. PLoS One 13(5):e0195803CrossRefGoogle Scholar
  34. Elias JA, Homer RJ, Hamid Q et al (2005) Chitinases and chitinase-like proteins in T(H)2 inflammation and astma. J Allergy Clin Immunol 116:497–500CrossRefGoogle Scholar
  35. Elieh D, Komi A, Sharma L, Charles S, Dela Cruz CS (2018) Chitin and its effects on inflammatory and immune responses. Clin Rev Allergy Immunol 54(2):213–223CrossRefGoogle Scholar
  36. Escott GM, Adams DJ (1995) Chitinase activity in human serum and leukocytes. Infect Immun 63(12):4770–4773Google Scholar
  37. Freier T, Montenegro R, Koh HS et al (2005) Chitin-based tubes for tissue engineering in the nervous system. Biomaterials 26:4624–4632CrossRefGoogle Scholar
  38. Fromont J, Żółtowska-Aksamitowska S, Galli R et al (2019) New family and genus of a Dendrilla-like sponge with characters of Verongiida. Part II. Discovery of chitin in the skeleton of Ernstilla lacunosa. Zool Anz 280:21–29CrossRefGoogle Scholar
  39. Green D (2008) Tissue bionics: examples in biomimetic tissue engineering. Biomed Mater 3:034010CrossRefGoogle Scholar
  40. Green D, Walsh D, Mann S et al (2002) The potential of biomimesis in bone tissue engineering: lessons from the design and synthesis of invertebrate skeletons. Bone 30(6):810–815CrossRefGoogle Scholar
  41. Huang Y, Zhong Z, Duan B, Zhang L et al (2014) Novel fibers fabricated directly from chitin solution and their application as wound dressing. J Mater Chem B 2:3427–3432CrossRefGoogle Scholar
  42. Jayakumar R, Chennazhi KP, Srinivasan S et al (2010) Chitin scaffolds in tissue engineering. Int J Mol Sci 2011 12(3):1876–1887CrossRefGoogle Scholar
  43. Jayakumar R, Prabaharan M, Sudheesh Kumar PT et al (2011) Biomaterials based on chitin and chitosan in wound dressing applications. Biotechnol Adv 29:322–337CrossRefGoogle Scholar
  44. Kadokawa J (2016) Preparation and grafting functionalization of self-assembled chitin nanofiber film. Coatings 6:27CrossRefGoogle Scholar
  45. Khor E (2001) Chitin: fulfilling a biomaterials promise. Elsevier, New YorkGoogle Scholar
  46. Khor E (2002) Chitin: a biomaterial in waiting. Curr Op Solid State Mater Sci 6:313–317CrossRefGoogle Scholar
  47. Khor E, Lim LY (2003) Implantable applications of chitin and chitosan. Biomaterials 24:2339–2349CrossRefGoogle Scholar
  48. Khosravi AR, Erle DJ (2016) Chitin-induced airway epithelial cell innate immune responses are inhibited by carvacrol/thymol. PLoS One 11(7):e0159459CrossRefGoogle Scholar
  49. Kim SK (2010) Chitin, chitosan, oligosaccharides and their derivatives. CRC Press, New YorkCrossRefGoogle Scholar
  50. Klinger C, Żółtowska-Aksamitowska S, Wysokowski M et al (2019) Express method for isolation of ready-to-use 3d chitin scaffolds from Aplysina archeri (Aplysineidae: Verongiida) demosponge. Mar Drug 17:131CrossRefGoogle Scholar
  51. Knorr D (1984) Use of chitinous polymers in food. Food Technol 38:85–89Google Scholar
  52. Koch BEV, Stougaard J, Herman P, Spaink HP (2015) Keeping track of the growing number of biological functions of chitin and its interaction partners in biomedical research. Glycobiology 25(5):469–482CrossRefGoogle Scholar
  53. Kogiso M, Nishiyama A, Shinohara T, Masataka Nakamura M et al (2011) Chitin particles induce size-dependent but carbohydrate-independent innate eosinophilia. Leukoc Biol 90(1):167–176CrossRefGoogle Scholar
  54. Kojima K, Okamoto Y, Miyatake K et al (1998) Collagen typing of granulation tissue induced by chitin and chitosan. Carbohydr Polym 37:109–113CrossRefGoogle Scholar
  55. Kojima K, Okamoto Y, Kojima K et al (2004) Miyatake, K., Fujise, H., Shigemasa, Y., Minami, S. Effects of chitin and chitosan on collagen synthesis in wound healing. J Vet Med Sci 66:1595–1598CrossRefGoogle Scholar
  56. Köll P, Borchers G, Metzger JO (1991) Thermal degradation of chitin and cellulose. J Anal Appl Pyrolysis 19:119–129CrossRefGoogle Scholar
  57. Koller B, Müller-Wiefel AS, Rupec R, Korting HC, Ruzicka T (2011) Chitin modulates innate immune responses of keratinocytes. PLoS One 6(2):e16594CrossRefGoogle Scholar
  58. Kurita K (2006) Chitin and chitosan: functional biopolymers from marine crustaceans. Mar Biotechnol 8(3):203–226CrossRefGoogle Scholar
  59. Kwak BK, Shim HJ, Han SM et al (2005) Chitin-based embolic materials in the renal artery of rabbits: pathologic evaluation of an absorbable particulate agent. Radiology 236:151–158CrossRefGoogle Scholar
  60. Lee CG (2009) Chitin, chitinases and chitinase-like proteins in allergic inflammation and tissue remodeling. Yonsei Med J 50(1):22–30CrossRefGoogle Scholar
  61. Li X, Min M, Du N, Ying Gu Y et al (2013) Chitin, chitosan, and glycated chitosan regulate immune responses: the novel adjuvants for cancer vaccine. Clin Dev Immunol 2013:387023Google Scholar
  62. Love GD, Grosjean E, Stalvies C et al (2009) Fossil steroids record the appearance of Demospongiae during the Cryogenian period. Nature 457(7230):718–721CrossRefGoogle Scholar
  63. Madhumathi K., Sudheesh Kumar PT, Abhilash S et al. (2010) Development of novel chitin/nanosilver composite scaffolds for wound dressing applications. J Mater Sci 21:807–813Google Scholar
  64. Maeda M, Iwase H, Kifune K (1984) Characteristics of chitin for orthopedic use. In: Zikakis JP (ed) Chitin, chitosan and related enzymes. Academic, OrlandoGoogle Scholar
  65. Mir M, Ali MN, Barakullah A et al (2018) Synthetic polymeric biomaterials for wound healing: a review. Prog Biomater 7:1–21CrossRefGoogle Scholar
  66. Morganti P (2010) Use and potential of nanotechnology in cosmetic dermatology. Clin Cosmet Investig Dermatol 3:5–13CrossRefGoogle Scholar
  67. Morganti P, Morganti G (2008) Chitin nanofibrils for advanced cosmeticals. Clin Dermatol 26:334–340CrossRefGoogle Scholar
  68. Morganti P, Morganti G, Morganti A (2011) Transforming nanostructured chitin from crustacean waste into beneficial health products: a must for our society. Nanotechnol Sci Appl 4:123–129CrossRefGoogle Scholar
  69. Morganti P, Palombo P, Palombo M, Giuseppe Fabrizi G et al (2012) A phosphatidylcholine hyaluronic acid chitin–nanofibrils complex for a fast skin remodeling and a rejuvenating look. Clin Cosmet Investig Dermatol 5:213–220CrossRefGoogle Scholar
  70. Mushi NE, Utsel S, Lars A, Berglund LA (2014) Nanostructured biocomposite films of high toughness based on native chitin nanofibers and chitosan. Front Chem 2:99CrossRefGoogle Scholar
  71. Mutsenko VV, Bazhenov VV, Rogulska O et al (2017a) 3D chitinous scaffolds derived from cultivated marine demosponge Aplysina aerophoba for tissue engineering approaches based on human mesenchymal stromal cells. Int J Biol Macromol 104:1966–1974CrossRefGoogle Scholar
  72. Mutsenko VV, Gryshkov O, Lauterboeck L et al (2017b) Novel chitin scaffolds derived from marine sponge Ianthella basta for tissue engineering approaches based on human mesenchymal stromal cells: biocompatibility and cryopreservation. Int J Biol Macromol 104:1955–1965CrossRefGoogle Scholar
  73. Muzzarelli RAA (2010) Chitins and chitosans as immunoadjuvants and non-allergenic drug carriers. Mar Drugs 8(2):292–312CrossRefGoogle Scholar
  74. Muzzarelli RAA, El Mehtedi M, Mattioli-Belmonte M (2014) Emerging biomedical applications of nano- chitins and nano-chitosans obtained via advanced eco-friendly technologies from marine resources. Mar Drugs 12(11):5468–5502CrossRefGoogle Scholar
  75. Nakashima K, Kimura S, Ogawa Y, Watanabe S et al (2018) Chitin-based barrier immunity and its loss predated mucus-colonization by indigenous gut microbiota. Nat Commun 9:3402CrossRefGoogle Scholar
  76. Noishiki Y, Takami H, Nishiyama Y et al (2003) Alkali-induced conversion of β-chitin to α-chitin. Biomacromolecules 4:869–899CrossRefGoogle Scholar
  77. Odier A (1823) Mémoir sur la composition chimique des parties cornées des insectes. Mémoirs de la Societé d’Histoire Naturelle 1:29–42Google Scholar
  78. Ohshima Y, Nishino K, Yonekura Y et al (1987) Clinical applications of chitin non-woven fabric as wound dressing. Eur J Plast Surg 10:66–69CrossRefGoogle Scholar
  79. Ohshima Y, Nishino K, Okuda R et al (1991) Clinical application of new chitin non-woven fabric and new chitin sponge sheet as wound dressing. Eur J Plat Surg 14:207–211Google Scholar
  80. Okamoto Y, Minami S, Matsuhashi A et al (1993) Application of polymeric N-acetyl-D-glucosamine (chitin) to veterinary practice. J Vet Med Sci 55:743–743CrossRefGoogle Scholar
  81. Okamoto Y, Shibazaki K, Minami S et al (1995) Evaluation of chitin and chitosan on open wound healing in dogs. J Vet Med Sci 57(5):201–205CrossRefGoogle Scholar
  82. Onishi H, Machida Y (1999) Biodegradation and distribution of water-soluble chitosan in mice. Biomaterials 20:175–182CrossRefGoogle Scholar
  83. Ozdemir C, Yazi D, Aydogan M et al (2006) Treatment with chitin microparticles is protective against lung histopathology in a murine asthma model. Clin Exp Allergy 36:960–968CrossRefGoogle Scholar
  84. Petrenko I, Bazhenov VV, Galli R et al (2017) Chitin of poriferan origin and the bioelectrometallurgy of copper/copper oxide. Int J Biol Macromol 104:1626–1632.  https://doi.org/10.1016/j.ijbiomac.2017.01.084CrossRefGoogle Scholar
  85. Philippe H, Derelle R, Lopez P et al (2009) Phylogenomics revives traditional views on deep animal relationships. Curr Biol1 9(8):706–712CrossRefGoogle Scholar
  86. Prudden JF, Migel P, Hanson P et al (1970) The discovery of a potent pure chemical wound-healing accelerator. Am J Surg 119:560–564CrossRefGoogle Scholar
  87. Reese TA, Liang H-E, Tager AD et al (2007) Chitin induces accumulation in tissue of innate immune cells associated with allergy. Nature 447:92–97CrossRefGoogle Scholar
  88. Reitner J, Wörheide G (2002) Non-lithistid fossil Demospongiae – origins of their palaeobiodiversity and highlights in history of preservation Systema Porifera. In: Hooper JNA, Rob WM (eds) A guide to the classification of sponges. Van Soest Kluwer Academic/Plenum Publishers, New York, pp 52–68Google Scholar
  89. Roberts GAF (1992) Chitin chemistry. Macmillan Press Ltd, LondonCrossRefGoogle Scholar
  90. Roy RM, Wüthrich M, Bruce S, Klein BS (2012) Chitin elicits CCL2 from airway epithelial cells and induces CCR2-dependent innate allergic inflammation in the lung. J Immunol 189(5):2545–2552CrossRefGoogle Scholar
  91. Saimoto H, Takamori Y, Morimoto M et al (1997) Biodegradation of chitin with enzymes and vital components. Macromol Symp 120:11–18CrossRefGoogle Scholar
  92. Schmidt RJ, Chung LY, Andrews AM et al (1993) Biocompatibility of wound management products: a study of the effects of various polysaccharides on Murine L929 fibroblast proliferation and macrophage respiratory burst. J Pharm Pharmacol 45:508–513CrossRefGoogle Scholar
  93. Shaala LA, Asfour HZ, Youssef DTA et al (2019) New source of 3D chitin scaffolds: the Red Sea demosponge Pseudoceratina arabica (Pseudoceratinidae, Verongiida). Mar Drugs 17:92CrossRefGoogle Scholar
  94. Shen CR, Juang HH, Chen HS, Yang CJ et al (2015) The correlation between chitin and acidic mammalian chitinase in animal models of allergic asthma. Int J Mol Sci 16(11):27371–27377CrossRefGoogle Scholar
  95. Singh R, Singh D (2014) Chitin membranes containing silver nanoparticles for wound dressing application. Int Wound J 11:264–268CrossRefGoogle Scholar
  96. Singh R, Chacharkar MP, Mathur AK (2008) Chitin membrane for wound dressing application – preparation, characterisation and toxicological evaluation. Int Wound J 5:665–673CrossRefGoogle Scholar
  97. Stawski D (2017) Thermogravimetric analysis of sponge chitins in thermooxidative conditions. In Extreme biomimetics, pp 191–203.  https://doi.org/10.1007/978-3-319-45340-8_7
  98. Stawski D, Rabiej S, Herczynska L et al (2008) Thermogravimetric analysis of chitins of different origin. J Therm Anal Calorim 93:489–494CrossRefGoogle Scholar
  99. Struszczyk MH (2006) Global requirements for medical applications of chitin and its derivatives. Pol Chitin Soc Monogr XI:95–102Google Scholar
  100. Sudheesh Kumar PT, Lakshmanan VK, Raj M et al (2013) Evaluation of wound healing potential of β-chitin hydrogel/nano zinc oxide composite bandage. Pharm Res 30:523–527CrossRefGoogle Scholar
  101. Sugintha W, Khunkaewla P, Schulte A (2013) Electrochemical biosensor applications of polysaccharides chitin and chitosan. Chem Rev 113:5458–5479CrossRefGoogle Scholar
  102. Tabata E, Kashimura A, Kikuchi A, Hiromasa Masuda H et al (2018) Chitin digestibility is dependent on feeding behaviors, which determine acidic chitinase mRNA levels in mammalian and poultry stomachs. Sci Rep 8:1461CrossRefGoogle Scholar
  103. Tanaka Y, Tanioka S, Tanaka M et al (1997) Effects of chitin and chitosan particles on BALB/c mice by oral and parenteral administration. Biomaterials 18:591–595CrossRefGoogle Scholar
  104. Tomihata K, Ikada Y (1997) In vitro and in vivo degradation of films of chitin and its deacetylated derivatives. Biomaterials 18:567–575CrossRefGoogle Scholar
  105. Vacelet J, Erpenbeck D, Diaz C et al (2019) New family and genus for Dendrilla-like sponges with characters of Verongiida. Part I redescription of Dendrilla lacunosa Hentschel 1912, diagnosis of the new family Ernstillidae and Ernstilla n.g. Zool Anz 280:14–20CrossRefGoogle Scholar
  106. Van Dyken SJ, Mohapatra A, Nussbaum JC, Ari B, Molofsky AB et al (2014) Chitin activates parallel immune modules that direct distinct inflammatory responses via innate lymphoid type 2 (ILC2) and γδ T cells. Immunity 40(3):414–424CrossRefGoogle Scholar
  107. Wan ACA, Khor E, Hastings GW (1998) Preparation of a chitin-apatite composite by in situ precipitation onto porous chitin scaffolds. J Biomed Mater Res: Appl Biomat 41:541–548CrossRefGoogle Scholar
  108. Wang Y, Fu C, Wu Z et al (2017) A chitin film containing basic fibroblast growth factor with a chitin-binding domain as wound dressings. Carbohydr Polym 174:723–730CrossRefGoogle Scholar
  109. Wiesner DL, Specht CA, Chrono K, Lee CK et al (2015) Chitin recognition via chitotriosidase promotes pathologic type-2 helper T cell responses to cryptococcal infection. PLoS Pathog 11(3):e1004701CrossRefGoogle Scholar
  110. Wu T, Zivanovic S, Draughon FA, Sams CE (2004) Chitin and chitosan—value-added products from mushroom waste. J Agric Food Chem 52(26):7905–7910CrossRefGoogle Scholar
  111. Wu S, Duan B, Lu A (2017) Biocompatible chitin/carbon nanotubes composite hydrogels as neuronal growth substrates. Carbohydr Polym 174:830–840CrossRefGoogle Scholar
  112. Wysokowski M, Bazhenov VV, Tsurkan MV et al (2013a) Isolation and identification of chitin in three-dimensional skeleton of Aplysina fistularis marine sponge. Int J Biol Macromol 62:94–100CrossRefGoogle Scholar
  113. Wysokowski M, Motylenko M, Stöcker et al (2013b) An extreme biomimetic approach: hydrothermal synthesis of β-chitin/ZnO nanostructured composites. J Mater Chem B 1:6469–6476CrossRefGoogle Scholar
  114. Wysokowski M, Materna K, Walter J et al (2015) Solvothermal synthesis of chitin-polyhedral oligomeric silsesquioxane (POSS) nanocomposites with hydrophobic properties. Int J Biol Macromol 78:224–229CrossRefGoogle Scholar
  115. Wysokowski M, Jesionowski T, Ehrlich H (2018) Biosilica as a source for inspiration in biological materials science. Am Mineral 103:665–691.  https://doi.org/10.2138/am-2018-6429CrossRefGoogle Scholar
  116. Xue F, Wu E, Zhang P et al (2015) Biodegradable chitin conduit tubulation combined with bone marrow mesenchymal stem cell transplantation for treatment of spinal cord injury by reducing glial scar and cavity formation. Neural Regen Res 10:104–111CrossRefGoogle Scholar
  117. Yang TL (2011) Chitin-based materials in tissue engineering: applications in soft tissue and epithelial organ. Int J Mol Sci 12(3):1936–1963CrossRefGoogle Scholar
  118. Yeul VS, Rayalu SS (2013) Unprecedented chitin and chitosan: a chemical overview. J Polym Environ 21(2):606–614CrossRefGoogle Scholar
  119. Younes I, Rinaudo M (2015) Chitin and chitosan preparation from marine sources. Structure, properties and applications. Mar Drugs 13(3):1133–1174CrossRefGoogle Scholar
  120. Zhang Y, Jiang J, Liu L et al (2015) Preparation, assessment, and comparison of α-chitin nan fiber films with different surface charges. Nanoscale Res Lett 10:226CrossRefGoogle Scholar
  121. Żółtowska-Aksamitowska S, Shaala LA, Youssef DTA et al (2018a) First report on chitin in a non-verongiid marine demosponge: the Mycale euplectellioides case. Mar Drugs 16:68CrossRefGoogle Scholar
  122. Żółtowska-Aksamitowska S, Tsurkan MV, Lim S-C et al (2018b) The demosponge Pseudoceratina purpurea as a new source of fibrous chitin. Int J Biol Macromol 112:1021–1028CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  • Hermann Ehrlich
    • 1
  1. 1.Institute of Electronic and Sensor MaterialsTU Bergakademie FreibergFreibergGermany

Personalised recommendations