Chitin-Protein-Based Composites
Chapter
First Online:
Abstract
Fur-like biological material made of densely distributed setae with unknown function has been reported here for some representatives of decapod crustaceans, both marine and fresh water habituating species. Such crabs as Kiwa hirsute, Shinkaia crosnieri as well as Eriocheir sinensis and E. japonica are described in the chapter as organisms producing setaous structures, which are made of chitin-protein-based composites. The presence of silk-like fibrillar protein within the inner pars of the setae has been discussed in comparison with marine silk of the amphipod’s origin.
References
- Anger K (1991) Effects of temperature and salinity on the larval development of the Chinese mitten crab Eriocheir sinensis (Decapoda: Grapsidae). Mar Ecol Prog Ser 72:103–110CrossRefGoogle Scholar
- Baba K, Williams AB (1998) Galatheoidea (Crustacea, Decapoda, Anomura) from hydrothermal systems in the west Pacific Ocean: Bismarck Archipelago and Okinawa Trough. Zoosystema 2:143–156Google Scholar
- Baba K, Macpherson E, Poore GCB et al (2008) Catalogue of squat lobsters of the world (Crustacea: Decapoda: Anomura―families Chirostylidae, and Kiwaidae). Zootaxa 1905:1–220CrossRefGoogle Scholar
- Carlton JT, Geller JB (1993) Ecological roulette: the global transport of nonindigenous marine organisms. Science 261:78–82CrossRefGoogle Scholar
- Cerda O, Hinojosa IA, Thiel M (2010) Nest-building behavior by the amphipod Peramphithoe femorata (Krøyer) on the kelp Macrocystis pyrifera (Linnaeus) C. Agardh from Northern Central Chile. Biol Bull 218:248–258CrossRefGoogle Scholar
- Chan TY, Hung M, Yu H (1995) Identity of Eriocheir recta (Stimpson, 1858) (Decapoda: Brachyura), with description of a new mitten crab from Taiwan. J Crustac Biol 15(2):301–308CrossRefGoogle Scholar
- Chan TY, Lee DA, Lee CS (2000) The first deep-sea hydrothermal animal reported from Taiwan: Shinkaia crosnieri Baba and Williams, 1998 (Crustacea: Decapoda: Galatheidae). Bull Mar Sci 2:799–804Google Scholar
- Claus C (1891) Ueber das Verhalten des nervosen Endapparates an den Sinneshaaren der Crustaceen. Zool Anz 14:363–368Google Scholar
- Cohen AN, Carlton JT (1997) Transoceanic transport mechanisms: introduction of the Chinese mitten crab, Eriocheir sinensis, to California. Pac Sci 51(1):1–11Google Scholar
- Dan QK et al (1984) The ecological study on the anadramous crab Eriocheir sinensis going upstream. Tung wu hsueh tsa chih (Chin J Zool) 6:19–22Google Scholar
- DeLeersnyder M (1967) Le Milieu inte’rieur d’Eriocheir sinensis Milne–Edwards et ses variations. I. Etude dans le milieu naturel. Cah Biol Mar 8:195–218Google Scholar
- Dittel AI, Epifanio CE (2009) Invasion biology of the Chinese mitten crab Eriochier sinensis: a brief review. J Exp Mar Biol Ecol 374:79–92CrossRefGoogle Scholar
- Goffredi SK, Jones WJ, Ehrlich H et al (2008) Bacteria associated with the recently yeti crab, Kiwa hirsuta. Environ Microbiol 10(10):2623–2634CrossRefGoogle Scholar
- Hoestlandt H (1948) Recherches sur la biologie de l’Eriocheir sinensis H. Milne Edwards (Crustacé Brachyoure). Ann Inst Océanograph 24:1–36Google Scholar
- Holmes SJ (1901) Observations on the habits and natural history of Amphithoe longimana Smith. Biol Bull 2(4):165–193CrossRefGoogle Scholar
- Howse PE (1968) The fine structure and functional organization of chordotonal organs. Syrup Zool Soc Lond 23:167–198Google Scholar
- Hymanson Z (1999) The Chinese mitten crab in its native range. Report presented before the Chinese mitten crab Project Work Team, California, StocktonGoogle Scholar
- Hymanson Z, Wang J, Sasaki T (1999) Lessons from the home of the Chinese mitten crab. IEP Newsl 12(3):25–32Google Scholar
- Ingle RW, Andrews MJ (1976) Chinese mitten crab reappears in Britain. Nature 263:638CrossRefGoogle Scholar
- Kaji T, Kakui K, Miyazaki N et al (2016) Mesoscale morphology at nanoscale resolution: serial block-face scanning electron microscopy reveals fine 3D detail of a novel silk spinneret system in a tube-building tanaid crustacean. Front Zool 13(1):1–9CrossRefGoogle Scholar
- Kakui K, Hiruta C (2014) Diverse pereopodal secretory systems implicated in thread production in an Apseudomorph tanaidacean crustacean. J Morphol 275(9):1041–1052CrossRefGoogle Scholar
- Kamalathevan P, Ooi PS, Loo YL (2018) Silk-based biomaterials in cutaneous wound healing: a systematic review. Adv Skin Wound Care 31(12):565–573CrossRefGoogle Scholar
- Kim CH, Hwang SG (1995) The complete larval development of the mitten crab Eriocheir sinensis H. Milne-Edwards, 1854 (Decapoda, Brachyura, Grapsidae) reared in the laboratory and a key to the known zoeae of the Varuninae. Crustaceana 68(7):703–812Google Scholar
- Kouyama N, Shimozawa T (1982) Structure of a hair mechanoreceptor in the antennule of crayfish (Crustacea). Cell Tissue Res 226:565–578CrossRefGoogle Scholar
- Kouyama N, Shimozawa T, Hisada M (1981) Transducing element of crustacean mechano-sensory hairs. Experientia 37:379–380CrossRefGoogle Scholar
- Krogh A (1938) The active absorption of ions in some freshwater animals. Z Vergl Physiol 25:335–350Google Scholar
- Kronenberger K, Dicko C, Vollrath F (2012a) A novel marine silk. Naturwissenschaften 99(1):3–10CrossRefGoogle Scholar
- Kronenberger K, Moore PG, Halcrow K (2012b) Spinning a marine silk for the purpose of tube-building. J Crustac Biol 32(2):191–202CrossRefGoogle Scholar
- Leydig F (1851) Ueber Artemia salina und Branchipus stagnalis. Z Wiss Zool 3:280–307Google Scholar
- Li Y, Han Z, She Q, Zhao Y et al (2019) Comparative transcriptome analysis provides insights into the molecular basis of circadian cycle regulation in Eriocheir sinensis. Gene 694:42–49CrossRefGoogle Scholar
- Macpherson E, Jones W, Segonzac M (2005) A new squat lobster family of Galatheoidea (Crustacea, Decapoda, Anomura) from the hydrothermal vents of the Pacific-Antarctic Ridge. Zoosystema 27:709–723Google Scholar
- Marquard O (1926) Die Chinesische Wollhandkrabbe, Eriocheir sinensis MILNE-EDWARDS, ein neuer Bewohner deutscher Flüsse. Fischerei 24:417–433Google Scholar
- Nebeski O (1880) Beiträge zur Kenntniss der Amphipoden der Adria, Arbeiten aus dem Zoologischen Institut der Universitat zu Wien 3:1–52Google Scholar
- Nepszy SJ, Leach JH (1973) First Records of the Chinese Mitten Crab, Eriocheir sinensis, (Crustacea: Brachyura) from North America. J Fish Res Bd Can 30(12):1909–1910CrossRefGoogle Scholar
- Neretin NY (2016) The morphology and ultrastructure of “amphipod silk” glands in Ampithoe rubricata (Crustacea, Amphipoda, Ampithoidae). Biol Bull 43(7):628–642CrossRefGoogle Scholar
- Neretin NY, Zhadan AE, Tzetlin AB (2017) Aspects of mast building and the fine structure of “amphipod silk” glands in Dyopedos bispinis. Contrib Zool 86(2):145–168Google Scholar
- Normant M, Chrobak M, Szaniawska A (2002) Energy value and chemical composition (CHN) of the Chinese mitten crab Eriocheir sinensis (Decapoda: Grapsidae) from the Baltic Sea. Thermochim Acta 394:233–237CrossRefGoogle Scholar
- Ohta S, Kim D (2001) Submersible observations of the hydrothermal vent communities on the Iheya Ridge, Mid Okinawa Trough, Japan. J Oceanogr 6:663–677CrossRefGoogle Scholar
- Olsowski A, Putzenlechner M, Böttcher K et al (1995) The carbonic anhydrase of the Chinese crab Eriocheir sinensis: effects of adaptation from tap to salt water. Helgol Meeresunters 49:727–735CrossRefGoogle Scholar
- Onken H (1999) Active NaCl absorption across split lamellae of posterior gills of Chinese crabs (Eriocheir sinensis) adapted to different salinities. Comp Biochem Physiol A 123:377–384CrossRefGoogle Scholar
- Panning A (1938) The Chinese mitten crab. Annual report of the Board of Regents of the Smithsonian Institution, Washington, DCGoogle Scholar
- Panning A (1939) The Chinese mitten crab. Annual report Smithsonian Institution, 1938. Washington, DCGoogle Scholar
- Peters N, Panning A (1933) Die Chinesische wollhandkrabbe (Eriocheir sinensis H. Milne Edwards) in Deutschland. Zool Anz Suppl 104:1–180Google Scholar
- Rath vom O (1891) Zur Kenntnis der Hautsinnesorgane der Crustaceen. Zool Anz 14:195–200. 205–214Google Scholar
- Rath vom O (1892) Ueber die von C. Claus beschriebene Nervenendigung in den Sinneshaaren der Crustaceen. Zool Anz 15:96–101Google Scholar
- Roterman CN, Copley JT, Linse KT, Tyler PA, Rogers AD (2013) The biogeography of the yeti crabs (Kiwaidae) with notes on the phylogeny of the Chirostyloidea (Decapoda: Anomura). Proc R Soc B 280:20130718CrossRefGoogle Scholar
- Sattler W (1958) Beiträge zur Kenntnis von lebensweise und körperbau der Larve und Puppe von Hydropsyche pict. (Trichoptera) mit besonderer berucksichtigung des Netzbaues. Z Morph u Okol Tiere 47:115–192CrossRefGoogle Scholar
- Schweitzer CE, Feldmann RM (2008) New eocene hydrocarbon seep decapod crustacean (Anomura: Galatheidae: Shinkaiinae) and its paleobiology. J Paleontol 82(5):1021–1029CrossRefGoogle Scholar
- Shaw J (1961) Sodium balance in Eriocheir sinensis M-Edw. The adaptation of the Crustacea to fresh water. J Exp Biol 38:154–162Google Scholar
- Shen Y, Kou Q, Chen W, He S et al (2016) Comparative population structure of two dominant species, Shinkaia crosnieri (Munidopsidae: Shinkaia) and Bathymodiolus platifrons (Mytilidae: Bathymodiolus), inhabiting both deep-sea vent and cold seep inferred from mitochondrial multi-genes. Ecol Evol 6(11):3571–3582CrossRefGoogle Scholar
- Siegfried S (1999) Notes on the invasion of the Chinese mitten crab (Eriocheir sinensis) and their entrainment at the Tracy Fish Collection Facility. Interagency Ecol Proj Newsl 12:24–25Google Scholar
- Silvestre F, Trausch G, Pequeux A et al (2004) Uptake of cadmium through isolated perfused gills of the Chinese mitten crab, Eriocheir sinensis. Comp Biochem Physiol 137A:189–196CrossRefGoogle Scholar
- Silvestre F, Duchˆene C, Trausch G et al (2005a) Tissue specific Cd accumulation and metallothionein-like protein levels during acclimation process in the Chinese crab Eriocheir sinensis. Comp Biochem Physiol C 140:39–45Google Scholar
- Silvestre F, Trausch G, Devos P (2005b) Hyper-osmoregulatory capacity of the Chinese mitten crab (Eriocheir sinensis) exposed to cadmium; acclimation during chronic exposure. Comp Biochem Physiol C 140:29–37CrossRefGoogle Scholar
- Tang B, Zhou K, Song K et al (2003) Molecular systematics of the Asian mitten crabs, genus Eriocheir (Crustacea: Brachyura). Mol Phylogenet Evol 29:309–316CrossRefGoogle Scholar
- Thatje S, Marsh L, Roterman CN, Mavrogordato MN, Linse K (2015) Adaptations to hydrothermal vent life in Kiwa tyleri, a new species of yeti crab from the East Scotia Ridge, Antarctica. PLoS One 10(6):e0127621CrossRefGoogle Scholar
- Tian Z, Jiao C (2019) Molt-dependent transcriptome analysis of claw muscles in Chinese mitten crab Eriocheir sinensis. Genes Genomics 41(5):515–528CrossRefGoogle Scholar
- Veldhuizen TC (2001) Life history, distribution, and impacts of the Chinese mitten crab, Eriocheir sinensis. Aquat Invaders 12:1–9Google Scholar
- Watsuji TO, Yamamoto A, Motoki K, Ueda K et al (2015) Molecular evidence of digestion and absorption of epibiotic bacterial community by deep-sea crab Shinkaia crosnieri. ISME J 9(4):821–831CrossRefGoogle Scholar
- Weatherbya TM, Lenz PH (2000) Mechanoreceptors in calanoid copepods: designed for high sensitivity. Arthropod Struct Dev 29:275–288CrossRefGoogle Scholar
- Wolff T (2005) Composition and endemism of the deep-sea hydrothermal vent fauna. Cah Biol Mar 46:97–104Google Scholar
- Young D (1970) The structure and function of a connective chordotonal organ in the cockroach leg. Philos Trans R Soc Lond B 256:401–428CrossRefGoogle Scholar
- Zhang D, Liu J, Qi T, Ge B (2018) Comparative transcriptome analysis of Eriocheir japonica sinensis response to environmental salinity. PLoS One 13(9):e0203280CrossRefGoogle Scholar
- Zhao AN (1999) Ecology and aquaculture of the Chinese mitten crab in its native habitat. Report presented before the Chinese mitten crab Project Work Team of the Interagency Ecological Project, California, RichmondGoogle Scholar
Copyright information
© Springer International Publishing AG, part of Springer Nature 2019