Advertisement

Halogenated Biocomposites

  • Hermann Ehrlich
Chapter
Part of the Biologically-Inspired Systems book series (BISY, volume 13)

Abstract

Parallel to calcified hard tissues, halogen- and metal–halogen-based biological materials are to be found in diverse marine invertebrates. There is still lack on information about the diversity in form and structure, biosynthesis, genetics their role in the evolution, ecology and behaviour, of invertebrates habituating in marine environments. This chapter is dedicated to few selected examples (jaws of polychaete and halogenated cuticles of crustaceans) of halogen-based biological materials of marine origin.

References

  1. Auffinger P, Hays FA, Westhof E et al (2004) Halogen bonds in biological molecules. Proc Natl Acad Sci U S A 101(48):16789–16794CrossRefGoogle Scholar
  2. Bergman C (1979) Polychaete jaws. In: Jaanusson V, Laufeld S, Skoglund R (eds) Lower Wenlock faunal and floral dynamics – Vattenfallet section, vol. C762, Gotland Sver Geol Unders. Kristianstads Boktryckeri, UppsalaGoogle Scholar
  3. Birkedal H, Khan RK, Slack N et al (2006) Halogenated veneers: protein cross-linking and halogenation in the jaws of Nereis, a marine polychaete worm. Chembiochem 7:1392–1399CrossRefGoogle Scholar
  4. Broomell CC, Mattoni MA, Zok FW et al (2006) Critical role of zinc in hardening of Nereis jaws. J Exp Biol 209:3219–3225CrossRefGoogle Scholar
  5. Broomell CC, Khan RK, Moses DN et al (2007) Mineral minimization in nature’s alternative teeth. J R Soc Interface 4(12):19–31CrossRefGoogle Scholar
  6. Broomell CC, Zok FW, Waite JH (2008) Role of transition metals in sclerotization of biological tissue. Acta Biomater 4:2045–2051CrossRefGoogle Scholar
  7. Bryan GW, Gibbs PE (1979) Zinc – a major inorganic component of nereid polychate jaws. J Mar Biol Assoc UK 59:969–973CrossRefGoogle Scholar
  8. Cavallo G, Metrangolo P, Milani R, Pilati T et al (2016) The halogen bond. Chem Rev 116(4):2478–2601CrossRefGoogle Scholar
  9. Cribb BW, Stewart A, Huang H et al (2008) Insect mandibles – comparative mechanical properties and links with metal incorporation. Naturwissenschaften 95:17–23CrossRefGoogle Scholar
  10. Cribb BW, Rathmell A, Charters R et al (2009) Structure, composition and properties of naturally occurring non-calcified crustacean cuticle. Arthropod Struct Dev 38:173–178CrossRefGoogle Scholar
  11. Danelius E, Andersson H, Jarvoll P, Kajsa Lood K et al (2017) Halogen bonding: a powerful tool for modulation of peptide conformation. Biochemistry 56(25):3265–3272CrossRefGoogle Scholar
  12. Elfman M, Eriksson M, Kristiansson P et al (1999) Application of mikroPIXE and STIM in analanalyses of fossil and recent polychaete jaws (scolecodonts). Nucl Instrum Methods Phys Res B Beam Interact Mater Atoms 158:287–291CrossRefGoogle Scholar
  13. Eriksson M, Elfman M (2000) Enrichment of metals in the jaws of fossil and extant polychaetes—distribution and function. Lethaia 33:75–81CrossRefGoogle Scholar
  14. Gibbs PE, Bryan GW (1979) Copper—the major metal component of glycerid polychaete jaws. J Mar Biol Assoc UK 60:205–214CrossRefGoogle Scholar
  15. Gorbman AM, Clements M, O’Brien R (1954) Utilization of radioiodine by invertebrates with special study of several Annelida and Mollusca. J Exp Zool 127:75–92CrossRefGoogle Scholar
  16. Khan RK, Stoimenov PK, Mates TE et al (2006) Exploring gradients of halogens and zinc in the surface and subsurface of Nereis jaws. Langmuir 22:8465–8470CrossRefGoogle Scholar
  17. Klawe WL, Dickie LH (1957) Biology of the bloodworm, Glycera dibranchiata Ehlers and its relation to the bloodworm fishery of the maritime provinces. Bull Fish Res Bd Can 115:1–136Google Scholar
  18. Lee S-M, Pippel E, Gösele U et al (2009) Greatly increased toughness of infiltrated spider silk. Science 324(5926):488–492CrossRefGoogle Scholar
  19. Lichtenegger HC, Schoberl T, Bartl MH et al (2002) High abrasion resistance with sparse mineralization: copper biomineral in worm jaws. Science 298:389–392CrossRefGoogle Scholar
  20. Lichtenegger HC, Schoberl T, Ruokolainen JT et al (2003) Zinc and mechanical prowess in jaws of Nereis, a marine worm. Proc Natl Acad Sci U S A 100:9144–9149CrossRefGoogle Scholar
  21. Lichtenegger HC, Birkedal H, Casa DM et al (2005) Distribution and role of trace transition metals in Glycera worm jaws studied with synchrotron microbeam techniques. Chem Mater 17:2927–2931CrossRefGoogle Scholar
  22. Michel C, Fonze-Vignaux M-T, Voss-Foucart M-F (1973) Donnes nouvelles sur la morphologie, l’histochimie et la composition chimique des machoires de Glycera convoluta Keferstein Ann élide Polychète. Bull Biol Fr Belg 107:301–321Google Scholar
  23. Moses DN, Mattoni MA, Slack NL et al (2006) Role of melanin in mechanical properties of Glycera jaws. Acta Biomater 2:521–530CrossRefGoogle Scholar
  24. Schofield RMS (1990) X-ray microanalytic concentration measurements in unsectioned specimens: a technique and its application to zinc, manganese, and iron enriched mechanical structures of organisms from three phyla. Ph.D. dissertation, University of OregonGoogle Scholar
  25. Schofield RMS (2001) Metals in cuticular structures. In: Brownell P, Polis G (eds) Scorpion biology and research. Oxford University Press, OxfordGoogle Scholar
  26. Schofield RMS (2005) Metal–halogen biomaterials. Am Entomol 51:45–47CrossRefGoogle Scholar
  27. Schofield RMS, Nesson MH, Richardson KA (2002) Tooth hardness increases with zinc-content in mandibles of young adult leaf-cutter ants. Naturwissenschaften 89:579–583Google Scholar
  28. Schofield RMS, Nesson MH, Richardson KA et al (2003) Zinc is incorporated into cuticular “tools” after ecdysis: the time course of the zinc distribution in “tools” and whole bodies of an ant and a scorpion. J Insect Physiol 49:31–44CrossRefGoogle Scholar
  29. Schofield RMS, Niedbala JC, Nesson MH et al (2009) Br-rich tips of calcified crab claws are less hard but more fracture resistant: a comparison of biomineralized and heavy-element biomaterials. J Struct Biol 166(2009):272–287CrossRefGoogle Scholar
  30. Scholfield MR, Van der Zanden CM, Carter M, Ho PS (2013) Halogen bonding (X-bonding): a biological perspective. Protein Sci 22(2):139–152CrossRefGoogle Scholar
  31. Scholfield MR, Coates Ford M, Vander Zanden CM, Billman MM et al (2015) Force field model of periodic trends in biomolecular halogen bonds. J Phys Chem B 119(29):9140–9149CrossRefGoogle Scholar
  32. Shaw M, Tibbetts IR (2004) Grazing by Metopograpsus frontalis (Decapoda: Grapsidae) on intertidal rock walls of Moreton Bay. Proc R Soc QLD 111:95–101Google Scholar
  33. Ueberlein S, Machill S, Schupp PJ, Brunner E (2017) Determination of the halogenated skeleton constituents of the marine demosponge Ianthella basta. Mar Drugs 15(2):34CrossRefGoogle Scholar
  34. Venturi S, Donati FM, Venturi A et al (2000) Letter to editor. Environmental iodine deficiency: a challenge to the evolution of terrestrial life? Thyroid 10:727–729CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  • Hermann Ehrlich
    • 1
  1. 1.Institute of Electronic and Sensor MaterialsTU Bergakademie FreibergFreibergGermany

Personalised recommendations