Advertisement

Enigmatic Structural Protein Spongin

  • Hermann Ehrlich
Chapter
Part of the Biologically-Inspired Systems book series (BISY, volume 13)

Abstract

In the orders Dendroceratida, Verongida and Dictyoceratida, the characteristic for most Demospongiae siliceous skeleton is replaced by proteinaceous, fibrous like spongin skeleton. These spongin fibers can be anastomosed in order to create a network which provides support for skeleton of the sponge’s cell tissues. This network represents sets of diverse unconnected, mostly dendritic three dimensional structures. From chemical point of view, spongin remains to be an enigmatic proteinaceous biomaterial than contains halogenated residues and cannot be sequences till now. Consequently it was defined previously as pseudoceratin, euceratin, horny or sclerotized protein, iodospongin, silk-, or gelatin-like protein, etc. State-of the art concerning diversity, biological functions, and material features of spongin are described and discussed in this chapter.

References

  1. Abderhalden E, Strauss E (1906) Die Spaltprodukte der Spongine mit Säuren. Ztschr Physiol Chem 48:49–53CrossRefGoogle Scholar
  2. Ackermann D, Burchard C (1941) Zur Kenntnis der Spongine. Hoppe-Seylers Ztschr Physiol Chem 271:153–159Google Scholar
  3. Ackermann D, Müller (1941) Über das Vorkommen von Dibromtyrosin neben Dijodtyrosin im Spongin. Hoppe Seyler Ztschr Physiol Chem 269:146–157CrossRefGoogle Scholar
  4. Bergquist PR (1978) Sponges. University of California Press, BerkeleyGoogle Scholar
  5. Bergquist PR (1980) A revision of the supraspecific classification of the orders Dictyoceratida, Dendroceratida and Verongida (class Demospongiae). NZ J Zool 7:443–503CrossRefGoogle Scholar
  6. Bowerbank JS (1841) Observations on a keratose sponge from Australia. Ann Mag VII:129Google Scholar
  7. Brunner E, Richthammer P, Ehrlich H et al (2009) Angew Chem Int Ed.  https://doi.org/10.1002/anie200
  8. Chanas B, Pawlik JR (1995) Defenses of Caribbean sponges against predatory reef fish. II. Spicules, tissue toughness, and nutritional quality. Mar Ecol Prog Ser 127:195–2t 1CrossRefGoogle Scholar
  9. Chanas B, Pawlik JR (1996) Does the skeleton of a sponge provide a defense against predatory reef fish? Oecologia 107:225–231CrossRefGoogle Scholar
  10. Clancey VHJ (1926). CL) The constitution of sponges. 1. The common bath sponge, Hippospongia equine. Biochem J 20:1186–1189CrossRefGoogle Scholar
  11. Cresswell E (1922) Sponges: their nature, history, modes of fishing, varieties, cultivation, etc. Sir Isaac Pitman & Sons Ltd., LondonGoogle Scholar
  12. Croockewit JH (1843) Zamenstelling van Spus. In: Schenik. Orderzock Labor Utrecht II:1Google Scholar
  13. de Laubenfels M, Storr J (1958) The taxonomy of American commercial sponges. Bull Mar Sci Gulf Caribb 8:99–117Google Scholar
  14. Dandy A (1916) On the occurrence of gelatinous spicules, and their mode of origin, in a new genus of siliceous sponges. Proc R Soc Ser B lxxxix:315–322CrossRefGoogle Scholar
  15. Dandy A (1926) On the origin, growth and arrangement of sponge spicules: a study in symbiosys. Q J Micr Sci 70:2–72Google Scholar
  16. Drechsel E (1896) Contribution to the chemistry of a sea animal. Z Biol 33:85–107Google Scholar
  17. Ehrlich H, Maldonado M, Spindler K-d, Eckert C, Hanke T, Born R, Goebel C, Simon P, Heinemann S, Worch H (2007) First evidence of chitin as a component of the skeletal fibers of marine sponges. Part I. Verongidae (demospongia: Porifera). J Exp Zool B Mol Dev Evol 308B(4):347–356CrossRefGoogle Scholar
  18. Ehrlich H, Ilan M, Maldonado M, Muricy G, Bavestrello G, Kljajic Z, Carballo JL, Schiaparelli S, Ereskovsky A, Schupp P, Born R, Worch H, Bazhenov VV, Kurek D, Varlamov V, Vyalikh D, Kummer K, Sivkov VV, Molodtsov SL, Meissner H, Richter G, Steck E, Richter W, Hunoldt S, Kammer M, Paasch S, Krasokhin V, Patzke G, Brunner E (2010) Three-dimensional chitin-based scaffolds from Verongida sponges (Demospongiae: Porifera). Part I. isolation and identification of chitin. Int J Biol Macromol 47(2):132–140CrossRefGoogle Scholar
  19. Ehrlich H, Kaluzhnaya OV, Tsurkan MV, Ereskovsky A, Tabachnick KR, Ilan M, Stelling A, Galli R, Petrova OV, Nekipelov SV, Sivkov VN, Vyalikh D, Born R, Behm T, Ehrlich A, Chernogor LI, Belikov S, Janussen D, Bazhenov VV, Wörheide G (2013) First report on chitinous holdfast in sponges (Porifera). Proc R Soc B Biol Sci 280(1762):20130339CrossRefGoogle Scholar
  20. Ehrlich H, Wysokowski M, Żółtowska-Aksamitowska S, Petrenko I, Jesionowski T (2018) Collagens of poriferan origin. Mar Drugs 16:79CrossRefGoogle Scholar
  21. Exposito J-Y, Cluzel C, Garrone R et al (2002) Evolution of collagens. Anat Rec 268:302–316CrossRefGoogle Scholar
  22. Freed LE, Marquis JC, Nohria A et al (1993) Neocartilage formation in vitro and in vivo using cell cultured on synthetic biodegradable polymers. J Biomed Mater Res 27:11CrossRefGoogle Scholar
  23. Fromont J, Żółtowska-Aksamitowska S, Galli R, Meissner H, Erpenbeck D, Vacelet J, Diaz C, Tsurkan MV, Petrenko I, Youssef DTA, Ehrlich H (2019) New family and genus of a Dendrilla-like sponge with characters of Verongiida. Part II. Discovery of chitin in the skeleton of Ernstilla lacunosa. Zool Anz 280:21–29CrossRefGoogle Scholar
  24. Fyfe A (1819) An account of some experiments, made with the view of ascertaining the different substances from which iodine can be procured. Edinb Phil J 1:245–258Google Scholar
  25. Gaino E, Pronzato R (1989) Ultrastructural evidence of bacterial damage to Spongia officinalis fibres (Porifera, Demospongiae). Dis Aquat Org 6:67–74CrossRefGoogle Scholar
  26. Garrone R (1978) Phylogenesis of connective tissue. In: Robert L (ed) Morphological aspects and biosynthesis of sponge intercellular matrix. S. Karger, BaselGoogle Scholar
  27. Geoffroy CJ (1707) Analyse chim. De l’eponge de la moyenne espece. Hist Mem Acad ParisGoogle Scholar
  28. Green D (2008) Tissue bionics: examples in biomimetic tissue engineering. Biomed Mater 3:034010. (11pp)CrossRefGoogle Scholar
  29. Green D, Walsh D, Mann S et al (2002) The potential of biomimesis in bone tissue engineering: lessons from the design and synthesis of invertebrate skeletons. Bone 30:810CrossRefGoogle Scholar
  30. Green D, Howard D, Yang X et al (2003) Natural marine sponge fibre skeleton: a biomimetic scaffold for human osteoprogenitor cell attachment, growth and differentiation. Tissue Eng 9:1159–1166CrossRefGoogle Scholar
  31. Gross J, Sokal Z, Rougvie M (1956) Structural and chemical studies on the connective tissue of marine sponges. J Histochem Cytochem 4:227–246CrossRefGoogle Scholar
  32. Harnack E (1898) Ueber das Jodospongin, die jodhaltige, eiweissartige Substanz aus dem Badeschwamm. Z Physiol Chem 24:412–424CrossRefGoogle Scholar
  33. Hundeshagen F (1895) Über jodhaltige Spongien und Jodospongin. Z Anorg Chem 16:473–476Google Scholar
  34. Jesionowski T, Norman M, Żółtowska-Aksamitowska S, Petrenko I, Ehrlich H (2018) Marine spongin: naturally prefabricated 3D scaffold-based biomaterial. Mar Drug 16:88CrossRefGoogle Scholar
  35. Junqua S (1978) Les constituants moleculaires de la matrice intercellulaire des spongiaires. These, Universite de Lille I-XXIXGoogle Scholar
  36. Junqua S, Robert L, Garrone R et al (1974) Biochemical and morphological studies on collagens of horny sponges. Ircinia filaments compared to spongins. Connect Tissue Res 2:193–203CrossRefGoogle Scholar
  37. Kim M-M, Mendis E, Rajapakse N, Lee S-H, Kim S-K (2009) Effect of spongin derived from on bone mineralization. J Biomed Mater Res B Appl Biomater 90B(2):540–546CrossRefGoogle Scholar
  38. Klinger C, Żółtowska-Aksamitowska S, Wysokowski M, Tsurkan MV, Galli R, Petrenko I, Machałowski T, Ereskovsky A, Martinović R, Muzychka L, Smolii OB, Bechmann N, Ivanenko V, Schupp PJ, Jesionowski T, Giovine M, Joseph Y, Bornstein SR, Voronkina A, Ehrlich H (2019) Express method for isolation of ready-to-use 3D chitin scaffolds from Aplysina archeri (Aplysineidae: Verongiida) demosponge. Mar Drugs 17(2):131CrossRefGoogle Scholar
  39. Koehl MAR (1982) Mechanical design of spicule-reinforced connective tissue: stiffness. J Exp Biol 98:239–267Google Scholar
  40. Langer R, Vacanti JP (1993) Tissue engineering. Science 260:920CrossRefGoogle Scholar
  41. Lin Z, Solomon KL, Zhang X, Pavlos NJ, Abel T, Willers C, Dai K, Xu J, Zheng Q, Zheng M (2011) In vitro evaluation of natural marine sponge collagen as a Scaffold for Bone tissue engineering. Int J Biol Sci 7:968–977Google Scholar
  42. Louden D, Inderbitzin S, Peng Z, de Nys R (2007) Development of a new protocol for testing bath sponge quality. Aquaculture 271:275–285CrossRefGoogle Scholar
  43. Low EM (1951) Halogenated amino acids of the bath sponge. J Mar Res 10:239–245Google Scholar
  44. Maldonado M (2009) Embryonic development of verongid demosponges supports the independent acquisition of sponging skeletons as an alternative to the siliceous skeleton of sponges. Biol J Linn Soc 97:427–447CrossRefGoogle Scholar
  45. Maldonado M, Uriz J-M (1996) The genus Igernella (Demospongiae: Dendroceratida) with description of a new species from the central Atlantic. Bull Inst R Sci Natl Belg 66:153–163Google Scholar
  46. Minchin FA (1900) Sponges. In: Lankester FR, Black A, Black C (eds) A treatise on zoology. LondonGoogle Scholar
  47. Nandi SK, Kundu B, Mahato A, Thakur NL, Joardar SN, Mandal BB (2015) In vitro and in vivo evaluation of the marine sponge skeleton as a bone mimicking biomaterial. Integr Biol 7:250–262CrossRefGoogle Scholar
  48. Norman M, Żółtowska-Aksamitowska S, Zgoła-Grześkowiak A, Ehlich H, Jesionowski T (2018) Iron(III) phthalocyanine supported on a spongin scaffold as an advanced photocatalyst in a highly efficient removal process of halophenols and bisphenol A. J Hazard Mater 34:78–88CrossRefGoogle Scholar
  49. Peyssonel JA (1758) New observations upon the worms that form sponges. Phil Trans L.2:590Google Scholar
  50. Reiswig HM (1973) Population dynamics of three Jamaican Demospongiae. Bull Mar Sci 23:191–226Google Scholar
  51. Roche J (1952) Biochimie comparée des scléroprotéines iodées des anthozoaires et des spongiaires. Experientia 8:45–54CrossRefGoogle Scholar
  52. Schlossberger JE (1859) Über die Unterscheidung des Fibroins von der Substanz des Badeschwammes. In: Amtlich Bericht 34. Versamml Deutsch Naturf. p 164Google Scholar
  53. Schulze FE (1879) Untersuchungen über den Bau und die Entwicklung der Spongien. Siebente Mitteilung. Die Familie der Spongida. Z Wiss Zool 32:593–660Google Scholar
  54. Shaala L, Asfour H, Youssef D, Żółtowska-Aksamitowska S, Wysokowski M, Tsurkan M, Galli R, Meissner H, Petrenko I, Tabachnick K, Ivanenko V, Bechmann N, Muzychka L, Smolii O, Martinović R, Joseph Y, Jesionowski T, Ehrlich H (2019) New source of 3D chitin scaffolds: the Red Sea demosponge Pseudoceratina arabica (Pseudoceratinidae, Verongiida). Mar Drugs 17(2):92CrossRefGoogle Scholar
  55. Städeler G (1859) Untersuchungen über das Fibroin, Spongin und Chitin, nebst Bemerkungen über den tierischen Schleim. Ann Chem Pharm 111:12–28CrossRefGoogle Scholar
  56. Storr JF (1964) Ecology of the Gulf of Mexico commercial sponges and its relation to the fishery, Special scientific report – fisheries 466. U.S. Fish and Wildlife Service, Washington, DCGoogle Scholar
  57. Strauss E (1904) Studien uber die Albuminoide mit besonderw Berucksichtigung des Spongins und der Keratine, Heidelberg, 1904; quoted from Maly’s Jahresbericht jiir Tierchemie, xxxiv, 34Google Scholar
  58. Szatkowski T, Kopczyński K, Motylenko M (2018) Extreme biomimetics: a carbonized 3D spongin scaffold as a novel support for nanostructured manganese oxide (IV) and its electrochemical applications. Nano Res 8:4199–4214CrossRefGoogle Scholar
  59. Vacelet J, Erpenbeck D, Diaz C, Ehrlich H, Fromont J (2019) New family and genus for Dendrilla-like sponges with characters of Verongiida. Part I redescription of Dendrilla lacunosa Hentschel 1912, diagnosis of the new family Ernstillidae and Ernstilla n. g. Zool Anz 280:14–20CrossRefGoogle Scholar
  60. von Kölliker A (1864) Icones histologicae, vol 1. Abth Protozoen, LeipzigGoogle Scholar
  61. Wainwright SA, Biggs WD, Currey JD, Gosline JM (1982) Mechanical design in organisms. Princeton University Press, PrincetonGoogle Scholar
  62. Webster NS, Negri AP, Webb RI et al (2002) A spongin-boring a-proteobacterium is the etiological agent of disease in the Great Barrier Reef sponge Rhopaloeides odorabile. Mar Ecol Prog Ser 232:305–309CrossRefGoogle Scholar
  63. Wheeler HL, Mendel LB (1909) The iodine complex in sponges (3,5-diiodotyrosins). J Biol Chem 7:1–9Google Scholar
  64. Wysokowski M, Bazhenov VV, Tsurkan MV, Galli R, Stelling AL, Stöcker H, Kaiser S, Niederschlag E, Gärtner G, Behm T, Ilan M, Petrenko AY, Jesionowski T, Ehrlich H (2013) Isolation and identification of chitin in three-dimensional skeleton of Aplysina fistularis marine sponge. Int J Biol Macromol 62:94–100CrossRefGoogle Scholar
  65. Żółtowska-Aksamitowska S, Tsurkan MV, Lim S–C, Meissner H, Tabachnick K, Shaala LA, Youssef DTA, Ivanenko VN, Petrenko I, Wysokowski M, Bechmann N, Joseph Y, Jesionowski T, Ehrlich H (2018a) The demosponge Pseudoceratina purpurea as a new source of fibrous chitin. Int J Biol Macromol 112:1021–1028CrossRefGoogle Scholar
  66. Żółtowska-Aksamitowska S, Shaala L, Youssef D, Elhady S, Tsurkan M, Petrenko I, Wysokowski M, Tabachnick K, Meissner H, Ivanenko V, Bechmann N, Joseph Y, Jesionowski T, Ehrlich H (2018b) First report on chitin in a non-Verongiid marine demosponge: the Mycale euplectellioides case. Mar Drugs 16(2):68CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  • Hermann Ehrlich
    • 1
  1. 1.Institute of Electronic and Sensor MaterialsTU Bergakademie FreibergFreibergGermany

Personalised recommendations