Advertisement

Techniques for Reducing Toxicity After SBRT

  • Daniel GorovetsEmail author
  • Marisa Kollmeier
  • Michael J. Zelefsky
Chapter

Abstract

The goal of any effective radiotherapeutic regimen is to deliver optimal tumoricidal doses with minimal subsequent toxicity. In order to accomplish this goal, careful patient selection, simulation, treatment planning, and radiation delivery are required. This is particularly important when delivering ultra-hypofractionated radiation therapy with SBRT. In this chapter, we review strategies that may be used to reduce toxicity of SBRT for prostate cancer.

Keywords

Prostate SBRT Gastrointestinal toxicity Genitourinary toxicity Erectile dysfunction Rectal spacer 

References

  1. 1.
    Madsen BL, Hsi RA, Pham HT, Fowler JF, Esagui L, Corman J. Stereotactic hypofractionated accurate radiotherapy of the prostate (SHARP), 33.5 Gy in five fractions for localized disease: first clinical trial results. Int J Radiat Oncol Biol Phys. 2007;67(4):1099–105.CrossRefGoogle Scholar
  2. 2.
    Katz AJ, Kang J. Quality of life and toxicity after SBRT for organ-confined prostate cancer, a 7-year study. Front Oncol. 2014;4:301.PubMedPubMedCentralGoogle Scholar
  3. 3.
    King CR, Brooks JD, Gill H, Presti JC. Long-term outcomes from a prospective trial of stereotactic body radiotherapy for low-risk prostate cancer. Int J Radiat Oncol Biol Phys. 2012;82(2):877–82.CrossRefGoogle Scholar
  4. 4.
    McBride SM, Wong DS, Dombrowski JJ, Harkins B, Tapella P, Hanscom HN, et al. Hypofractionated stereotactic body radiotherapy in low-risk prostate adenocarcinoma: preliminary results of a multi-institutional phase 1 feasibility trial. Cancer. 2012;118(15):3681–90.CrossRefGoogle Scholar
  5. 5.
    Hannan R, Tumati V, Xie X-J, Cho LC, Kavanagh BD, Brindle J, et al. Stereotactic body radiation therapy for low and intermediate risk prostate cancer-results from a multi-institutional clinical trial. Eur J Cancer. 2016;59:142–51.CrossRefGoogle Scholar
  6. 6.
    Boike TP, Lotan Y, Cho LC, Brindle J, DeRose P, Xie X-J, et al. Phase I dose-escalation study of stereotactic body radiation therapy for low- and intermediate-risk prostate cancer. J Clin Oncol Off J Am Soc Clin Oncol. 2011;29(15):2020–6.CrossRefGoogle Scholar
  7. 7.
    Anwar M, Weinberg V, Seymour Z, Hsu IJ, Roach M, Gottschalk AR. Outcomes of hypofractionated stereotactic body radiotherapy boost for intermediate and high-risk prostate cancer. Radiat Oncol. 2016;11:8.CrossRefGoogle Scholar
  8. 8.
    Mantz C. A phase II trial of stereotactic ablative body radiotherapy for low-risk prostate cancer using a non-robotic linear accelerator and real-time target tracking: report of toxicity, quality of life, and disease control outcomes with 5-year minimum follow-up. Front Oncol [Internet]. 2014;4. Available from: http://journal.frontiersin.org/article/10.3389/fonc.2014.00279/abstract. Accessed 7 May 2018
  9. 9.
    Freeman DE, King CR. Stereotactic body radiotherapy for low-risk prostate cancer: five-year outcomes. Radiat Oncol. 2011;6:3.CrossRefGoogle Scholar
  10. 10.
    Davis J, Sharma S, Shumway R, Perry D, Bydder S, Simpson CK, et al. Stereotactic body radiotherapy for clinically localized prostate cancer: toxicity and biochemical disease-free outcomes from a multi-institutional patient registry. Cureus [Internet]. 2015. Available from: http://www.cureus.com/articles/3466-stereotactic-body-radiotherapy-for-clinically-localized-prostate-cancer-toxicity-and-biochemical-disease-free-outcomes-from-a-multi-institutional-patient-registry. Accessed 7 May 2018
  11. 11.
    Hasleton PS, Carr N, Schofield PF. Vascular changes in radiation bowel disease. Histopathology. 1985;9(5):517–34.CrossRefGoogle Scholar
  12. 12.
    Willett CG, Ooi CJ, Zietman AL, Menon V, Goldberg S, Sands BE, et al. Acute and late toxicity of patients with inflammatory bowel disease undergoing irradiation for abdominal and pelvic neoplasms. Int J Radiat Oncol Biol Phys. 2000;46(4):995–8.CrossRefGoogle Scholar
  13. 13.
    Valdagni R, Rancati T, Fiorino C, Fellin G, Magli A, Baccolini M, et al. Development of a set of nomograms to predict acute lower gastrointestinal toxicity for prostate cancer 3D-CRT. Int J Radiat Oncol Biol Phys. 2008;71(4):1065–73.CrossRefGoogle Scholar
  14. 14.
    Choe KS, Jani AB, Liauw SL. External beam radiotherapy for prostate cancer patients on anticoagulation therapy: how significant is the bleeding toxicity? Int J Radiat Oncol Biol Phys. 2010;76(3):755–60.CrossRefGoogle Scholar
  15. 15.
    Schreiber D, Chen S-C, Rineer J, Worth M, Telivala T, Schwartz D. Assessment of risk of late rectal bleeding for patients with prostate cancer started on anticoagulation before or after radiation treatment. Anticancer Res. 2014;34(12):7367–72.PubMedGoogle Scholar
  16. 16.
    Kuban D, Pollack A, Huang E, Levy L, Dong L, Starkschall G, et al. Hazards of dose escalation in prostate cancer radiotherapy. Int J Radiat Oncol Biol Phys. 2003;57(5):1260–8.CrossRefGoogle Scholar
  17. 17.
    Jackson A, Skwarchuk MW, Zelefsky MJ, Cowen DM, Venkatraman ES, Levegrun S, et al. Late rectal bleeding after conformal radiotherapy of prostate cancer. II. Volume effects and dose-volume histograms. Int J Radiat Oncol Biol Phys. 2001;49(3):685–98.CrossRefGoogle Scholar
  18. 18.
    Skwarchuk MW, Jackson A, Zelefsky MJ, Venkatraman ES, Cowen DM, Levegrün S, et al. Late rectal toxicity after conformal radiotherapy of prostate cancer (I): multivariate analysis and dose-response. Int J Radiat Oncol Biol Phys. 2000;47(1):103–13.CrossRefGoogle Scholar
  19. 19.
    Swanson GP, Stathakis S. Rectal dose constraints for intensity modulated radiation therapy of the prostate. Am J Clin Oncol. 2011;34(2):188–95.PubMedGoogle Scholar
  20. 20.
    Kim DWN, Cho LC, Straka C, Christie A, Lotan Y, Pistenmaa D, et al. Predictors of rectal tolerance observed in a dose-escalated phase 1-2 trial of stereotactic body radiation therapy for prostate cancer. Int J Radiat Oncol Biol Phys. 2014;89(3):509–17.CrossRefGoogle Scholar
  21. 21.
    King CR, Freeman D, Kaplan I, Fuller D, Bolzicco G, Collins S, et al. Stereotactic body radiotherapy for localized prostate cancer: pooled analysis from a multi-institutional consortium of prospective phase II trials. Radiother Oncol. 2013;109(2):217–21.CrossRefGoogle Scholar
  22. 22.
    Fiorino C, Di Muzio N, Broggi S, Cozzarini C, Maggiulli E, Alongi F, et al. Evidence of limited motion of the prostate by carefully emptying the rectum as assessed by daily MVCT image guidance with helical tomotherapy. Int J Radiat Oncol Biol Phys. 2008;71(2):611–7.CrossRefGoogle Scholar
  23. 23.
    Ogino I, Uemura H, Inoue T, Kubota Y, Nomura K, Okamoto N. Reduction of prostate motion by removal of gas in rectum during radiotherapy. Int J Radiat Oncol Biol Phys. 2008;72(2):456–66.CrossRefGoogle Scholar
  24. 24.
    D’Amico AV, Manola J, Loffredo M, Lopes L, Nissen K, O’Farrell DA, et al. A practical method to achieve prostate gland immobilization and target verification for daily treatment. Int J Radiat Oncol Biol Phys. 2001;51(5):1431–6.CrossRefGoogle Scholar
  25. 25.
    van Lin ENJT, Kristinsson J, Philippens MEP, de Jong DJ, van der Vight LP, Kaanders JHAM, et al. Reduced late rectal mucosal changes after prostate three-dimensional conformal radiotherapy with endorectal balloon as observed in repeated endoscopy. Int J Radiat Oncol Biol Phys. 2007;67(3):799–811.CrossRefGoogle Scholar
  26. 26.
    King CR, Brooks JD, Gill H, Pawlicki T, Cotrutz C, Presti JC. Stereotactic body radiotherapy for localized prostate cancer: interim results of a prospective phase II clinical trial. Int J Radiat Oncol Biol Phys. 2009;73(4):1043–8.CrossRefGoogle Scholar
  27. 27.
    Quon HC, Ong A, Cheung P, Chu W, Chung HT, Vesprini D, et al. PATRIOT trial: randomized phase II study of prostate stereotactic body radiotherapy comparing 11 versus 29 days overall treatment time. J Clin Oncol. 2015;33(Suppl 7):6–6.CrossRefGoogle Scholar
  28. 28.
    Prada PJ, Fernández J, Martinez AA, de la Rúa A, Gonzalez JM, Fernandez JM, et al. Transperineal injection of hyaluronic acid in anterior perirectal fat to decrease rectal toxicity from radiation delivered with intensity modulated brachytherapy or EBRT for prostate cancer patients. Int J Radiat Oncol Biol Phys. 2007;69(1):95–102.CrossRefGoogle Scholar
  29. 29.
    Prada PJ, Gonzalez H, Menéndez C, Llaneza A, Fernández J, Santamarta E, et al. Transperineal injection of hyaluronic acid in the anterior perirectal fat to decrease rectal toxicity from radiation delivered with low-dose-rate brachytherapy for prostate cancer patients. Brachytherapy. 2009;8(2):210–7.CrossRefGoogle Scholar
  30. 30.
    Pinkawa M, Escobar Corral N, Caffaro M, Piroth MD, Holy R, Djukic V, et al. Application of a spacer gel to optimize three-dimensional conformal and intensity modulated radiotherapy for prostate cancer. Radiother Oncol. 2011;100(3):436–41.CrossRefGoogle Scholar
  31. 31.
    Song DY, Herfarth KK, Uhl M, Eble MJ, Pinkawa M, van Triest B, et al. A multi-institutional clinical trial of rectal dose reduction via injected polyethylene-glycol hydrogel during intensity modulated radiation therapy for prostate cancer: analysis of dosimetric outcomes. Int J Radiat Oncol Biol Phys. 2013;87(1):81–7.CrossRefGoogle Scholar
  32. 32.
    Eckert F, Alloussi S, Paulsen F, Bamberg M, Zips D, Spillner P, et al. Prospective evaluation of a hydrogel spacer for rectal separation in dose-escalated intensity-modulated radiotherapy for clinically localized prostate cancer. BMC Cancer [Internet]. 2013;13(1). Available from: http://bmccancer.biomedcentral.com/articles/10.1186/1471-2407-13-27. Accessed 5 Mar 2018
  33. 33.
    Uhl M, Herfarth K, Eble MJ, Pinkawa M, van Triest B, Kalisvaart R, et al. Absorbable hydrogel spacer use in men undergoing prostate cancer radiotherapy: 12 month toxicity and proctoscopy results of a prospective multicenter phase II trial. Radiat Oncol. 2014;9(1):96.CrossRefGoogle Scholar
  34. 34.
    Mariados N, Sylvester J, Shah D, Karsh L, Hudes R, Beyer D, et al. Hydrogel spacer prospective multicenter randomized controlled pivotal trial: dosimetric and clinical effects of perirectal spacer application in men undergoing prostate image guided intensity modulated radiation therapy. Int J Radiat Oncol Biol Phys. 2015;92(5):971–7.CrossRefGoogle Scholar
  35. 35.
    Hamstra DA, Mariados N, Sylvester J, Shah D, Karsh L, Hudes R, et al. Continued benefit to rectal separation for prostate radiation therapy: final results of a phase III trial. Int J Radiat Oncol Biol Phys. 2017;97(5):976–85.CrossRefGoogle Scholar
  36. 36.
    Taggar AS, Charas T, Cohen GN, Boonyawan K, Kollmeier M, McBride S, et al. Placement of an absorbable rectal hydrogel spacer in patients undergoing low-dose-rate brachytherapy with palladium-103. Brachytherapy. 2018;17(2):251–8.CrossRefGoogle Scholar
  37. 37.
    Skolarus TA, Dunn RL, Sanda MG, Chang P, Greenfield TK, Litwin MS, et al. Minimally important difference for the expanded prostate cancer index composite short form. Urology. 2015;85(1):101–6.CrossRefGoogle Scholar
  38. 38.
    Pinkawa M, Berneking V, Schlenter M, Krenkel B, Eble MJ. Quality of life after radiation therapy for prostate cancer with a hydrogel spacer: 5-year results. Int J Radiat Oncol Biol Phys. 2017;99(2):374–7.CrossRefGoogle Scholar
  39. 39.
    Pinkawa M, Piroth MD, Holy R, Escobar-Corral N, Caffaro M, Djukic V, et al. Spacer stability and prostate position variability during radiotherapy for prostate cancer applying a hydrogel to protect the rectal wall. Radiother Oncol. 2013;106(2):220–4.CrossRefGoogle Scholar
  40. 40.
    Noyes WR, Hosford CC, Schultz SE. Human collagen injections to reduce rectal dose during radiotherapy. Int J Radiat Oncol Biol Phys. 2012;82(5):1918–22.CrossRefGoogle Scholar
  41. 41.
    Gez E, Cytron S, Yosef RB, London D, Corn BW, Alani S, et al. Application of an interstitial and biodegradable balloon system for prostate-rectum separation during prostate cancer radiotherapy: a prospective multi-center study. Radiat Oncol. 2013;8(1):96.CrossRefGoogle Scholar
  42. 42.
    Repka MC, Kole TP, Lee J, Wu B, Lei S, Yung T, et al. Predictors of acute urinary symptom flare following stereotactic body radiation therapy (SBRT) in the definitive treatment of localized prostate cancer. Acta Oncol. 2017;56(8):1136–8.CrossRefGoogle Scholar
  43. 43.
    Woo JA, Chen LN, Bhagat A, Oermann EK, Kim JS, Moures R, et al. Clinical characteristics and management of late urinary symptom flare following stereotactic body radiation therapy for prostate cancer. Front Oncol. 2014;4:122.CrossRefGoogle Scholar
  44. 44.
    Janowski E, Chen LN, Kim JS, Lei S, Suy S, Collins B, et al. Stereotactic body radiation therapy (SBRT) for prostate cancer in men with large prostates (≥50 cm3). Radiat Oncol. 2014;9:241.CrossRefGoogle Scholar
  45. 45.
    Bolzicco G, Favretto MS, Satariano N, Scremin E, Tambone C, Tasca A. A single-center study of 100 consecutive patients with localized prostate cancer treated with stereotactic body radiotherapy. BMC Urol. 2013;13:49.CrossRefGoogle Scholar
  46. 46.
    Chen LN, Suy S, Uhm S, Oermann EK, Ju AW, Chen V, et al. Stereotactic body radiation therapy (SBRT) for clinically localized prostate cancer: The Georgetown University experience. Radiat Oncol. 2013;8:58.CrossRefGoogle Scholar
  47. 47.
    Leroy T, Lacornerie T, Bogart E, Nickers P, Lartigau E, Pasquier D. Salvage robotic SBRT for local prostate cancer recurrence after radiotherapy: preliminary results of the Oscar Lambret Center. Radiat Oncol. 2017;12:95.CrossRefGoogle Scholar
  48. 48.
    Quarrier S, Katz A, Haas J. Treatment of prostate cancer local recurrence after whole-gland cryosurgery with frameless robotic stereotactic body radiotherapy: initial experience. Clin Genitourin Cancer. 2013;11(2):89–93.CrossRefGoogle Scholar
  49. 49.
    Ghadjar P, Zelefsky MJ, Spratt DE, Munck af Rosenschöld P, Oh JH, Hunt M, et al. Impact of dose to the bladder trigone on long-term urinary function after high-dose intensity modulated radiation therapy for localized prostate cancer. Int J Radiat Oncol Biol Phys. 2014;88(2):339–44.CrossRefGoogle Scholar
  50. 50.
    Hathout L, Folkert MR, Kollmeier MA, Yamada Y, Cohen GN, Zelefsky MJ. Dose to the bladder neck is the most important predictor for acute and late toxicity after low-dose-rate prostate brachytherapy: implications for establishing new dose constraints for treatment planning. Int J Radiat Oncol Biol Phys. 2014;90(2):312–9.CrossRefGoogle Scholar
  51. 51.
    Kole TP, Tong M, Wu B, Lei S, Obayomi-Davies O, Chen LN, et al. Late urinary toxicity modeling after stereotactic body radiotherapy (SBRT) in the definitive treatment of localized prostate cancer. Acta Oncol. 2016;55(1):52–8.CrossRefGoogle Scholar
  52. 52.
    Stone NN, Marshall DT, Stone JJ, Cesaretti JA, Stock RG. Does neoadjuvant hormonal therapy improve urinary function when given to men with large prostates undergoing prostate brachytherapy? J Urol. 2010;183(2):634–9.CrossRefGoogle Scholar
  53. 53.
    King BL, Butler WM, Merrick GS, Kurko BS, Reed JL, Murray BC, et al. Electromagnetic transponders indicate prostate size increase followed by decrease during the course of external beam radiation therapy. Int J Radiat Oncol Biol Phys. 2011;79(5):1350–7.CrossRefGoogle Scholar
  54. 54.
    Sacco DE, Daller M, Grocela JA, Babayan RK, Zietman AL. Corticosteroid use after prostate brachytherapy reduces the risk of acute urinary retention. BJU Int. 2003;91(4):345–9.CrossRefGoogle Scholar
  55. 55.
    Speight JL, Shinohara K, Pickett B, Weinberg VK, Hsu IC, Roach M. Prostate volume change after radioactive seed implantation: possible benefit of improved dose volume histogram with perioperative steroid. Int J Radiat Oncol Biol Phys. 2000;48(5):1461–7.CrossRefGoogle Scholar
  56. 56.
    Sanda MG, Dunn RL, Michalski J, Sandler HM, Northouse L, Hembroff L, et al. Quality of life and satisfaction with outcome among prostate-cancer survivors. N Engl J Med. 2008;358(12):1250–61.CrossRefGoogle Scholar
  57. 57.
    Mahmood J, Shamah AA, Creed TM, Pavlovic R, Matsui H, Kimura M, et al. Radiation-induced erectile dysfunction: recent advances and future directions. Adv Radiat Oncol. 2016;1(3):161–9.CrossRefGoogle Scholar
  58. 58.
    Johannes CB, Araujo AB, Feldman HA, Derby CA, Kleinman KP, McKinlay JB. Incidence of erectile dysfunction in men 40 to 69 years old: longitudinal results from the Massachusetts male aging study. J Urol. 2000;163(2):460–3.CrossRefGoogle Scholar
  59. 59.
    Zelefsky MJ, Eid JF. Elucidating the etiology of erectile dysfunction after definitive therapy for prostatic cancer. Int J Radiat Oncol Biol Phys. 1998;40(1):129–33.CrossRefGoogle Scholar
  60. 60.
    Mulhall J, Ahmed A, Parker M, Mohideen N. Original research—erectile dysfunction: the hemodynamics of erectile dysfunction following external beam radiation for prostate cancer. J Sex Med. 2005;2(3):432–7.CrossRefGoogle Scholar
  61. 61.
    Roach M, Faillace-Akazawa P, Malfatti C, Holland J, Hricak H. Prostate volumes defined by magnetic resonance imaging and computerized tomographic scans for three-dimensional conformal radiotherapy. Int J Radiat Oncol Biol Phys. 1996;35(5):1011–8.CrossRefGoogle Scholar
  62. 62.
    Rasch C, Barillot I, Remeijer P, Touw A, van Herk M, Lebesque JV. Definition of the prostate in CT and MRI: a multi-observer study. Int J Radiat Oncol Biol Phys. 1999;43(1):57–66.CrossRefGoogle Scholar
  63. 63.
    Buyyounouski MK, Horwitz EM, Uzzo RG, Price RA, McNeeley SW, Azizi D, et al. The radiation doses to erectile tissues defined with magnetic resonance imaging after intensity-modulated radiation therapy or iodine-125 brachytherapy. Int J Radiat Oncol Biol Phys. 2004;59(5):1383–91.CrossRefGoogle Scholar
  64. 64.
    Hamstra DA, Mariados N, Sylvester J, Shah D, Gross E, Hudes R, et al. Sexual quality of life following prostate intensity modulated radiation therapy (IMRT) with a rectal/prostate spacer: secondary analysis of a phase 3 trial. Pract Radiat Oncol. 2018;8(1):e7–15.CrossRefGoogle Scholar
  65. 65.
    Zelefsky MJ, McKee AB, Lee H, Leibel SA. Efficacy of oral sildenafil in patients with erectile dysfunction after radiotherapy for carcinoma of the prostate. Urology. 1999;53(4):775–8.CrossRefGoogle Scholar
  66. 66.
    Kedia S, Zippe CD, Agarwal A, Nelson DR, Lakin MM. Treatment of erectile dysfunction with sildenafil citrate (Viagra) after radiation therapy for prostate cancer. Urology. 1999;54(2):308–12.CrossRefGoogle Scholar
  67. 67.
    Valicenti RK, Choi E, Chen C, Lu JD, Hirsch IH, Mulholland GS, et al. Sildenafil citrate effectively reverses sexual dysfunction induced by three-dimensional conformal radiation therapy. Urology. 2001;57(4):769–73.CrossRefGoogle Scholar
  68. 68.
    Incrocci L, Slagter C, Slob AK, Hop WCJ. A randomized, double-blind, placebo-controlled, cross-over study to assess the efficacy of tadalafil (Cialis) in the treatment of erectile dysfunction following three-dimensional conformal external-beam radiotherapy for prostatic carcinoma. Int J Radiat Oncol Biol Phys. 2006;66(2):439–44.CrossRefGoogle Scholar
  69. 69.
    Incrocci L, Slob AK, Hop WCJ. Tadalafil (Cialis) and erectile dysfunction after radiotherapy for prostate cancer: an open-label extension of a blinded trial. Urology. 2007;70(6):1190–3.CrossRefGoogle Scholar
  70. 70.
    Ohebshalom M, Parker M, Guhring P, Mulhall JP. The efficacy of sildenafil citrate following radiation therapy for prostate cancer: temporal considerations. J Urol. 2005;174(1):258–62. discussion 262CrossRefGoogle Scholar
  71. 71.
    Schiff JD, Bar-Chama N, Cesaretti J, Stock R. Early use of a phosphodiesterase inhibitor after brachytherapy restores and preserves erectile function. BJU Int. 2006;98(6):1255–8.CrossRefGoogle Scholar
  72. 72.
    Watkins Bruner D, James JL, Bryan CJ, Pisansky TM, Rotman M, Corbett T, et al. Randomized, double-blinded, placebo-controlled crossover trial of treating erectile dysfunction with sildenafil after radiotherapy and short-term androgen deprivation therapy: results of RTOG 0215. J Sex Med. 2011;8(4):1228–38.CrossRefGoogle Scholar
  73. 73.
    Aversa A, Greco E, Bruzziches R, Pili M, Rosano G, Spera G. Relationship between chronic tadalafil administration and improvement of endothelial function in men with erectile dysfunction: a pilot study. Int J Impot Res. 2007;19(2):200–7.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  • Daniel Gorovets
    • 1
    Email author
  • Marisa Kollmeier
    • 1
  • Michael J. Zelefsky
    • 1
  1. 1.Memorial Sloan Kettering Cancer CenterNew YorkUSA

Personalised recommendations