Future Technologies in Intralogistics and Material Handling

  • Kai FurmansEmail author
  • Zäzilia Seibold
  • Andreas Trenkle
Part of the Lecture Notes in Logistics book series (LNLO)


This chapter describes future technologies in Intralogistics and Material Handling. Starting from a description of today’s material handling systems (including two case studies) and an analysis of their shortcomings we derive desirable properties for future material handling systems (basic section). The necessary functions for these systems are explained and samples of modern material handling systems are presented which at least partially implement these properties (advanced section). The state of the art of the challenging functions is explained and references for further reading are given.


  1. Arnold D, Furmans K (2009) Materialfluss in logistiksystemen. SpringerGoogle Scholar
  2. Börcsök J (2007) Functional safety: basic principles of safety-related systems. HüthigGoogle Scholar
  3. Flexlog GmbH (2015) Dezentral steuerbar—Modulbaukasten mit FlexTechnology. Accessed 23 July 2015
  4. Furmans K, Schönung F, Gue KR (2010) Plug-and-work material handling systems. In: Proceedings of the international material handling research colloquiumGoogle Scholar
  5. Furmans K, Seibold Z, Trenkle A, Stoll T (2014) Future requirements for small-scaled autonomous transportation systems. In: Production environments proceedings of the 7th international scientific symposium on logistics, Logistics JournalGoogle Scholar
  6. Fürstenberg K, Kirsch C (2017) Intelligente Sensorik als Grundbaustein für cyber-physische Systeme in der Logistik. In Handbuch Industrie 4.0 Bd. 3. Springer, Berlin, Heidelberg, pp 271–297Google Scholar
  7. Gilchrist A (2016) Designing industrial internet systems. In Industry 4.0. Apress, pp 87–118Google Scholar
  8. Gue KR, Furmans K, Seibold Z, Uludag O (2014) Grid-Store: a puzzle-based storage system with decentralized controlGoogle Scholar
  9. Gue KR, Uludag O, Furmans K (2012) A high-density system for carton sequencing. In: Bundesvereinigung für Logistik (eds), proceedings of the 6th international scientific symposium on logistics (ISSL)Google Scholar
  10. Jeschke S, Brecher C, Song H, Rawat D (eds) (2016) Industrial internet of things: cyber manufacturing systems. SpringerGoogle Scholar
  11. Krishna G (2015) The best interface is no interface: the simple path to brilliant technology. Pearson EducationGoogle Scholar
  12. Krühn T, Radosavac M, Shchekutin N, Overmeyer L (2013) Decentralized and dynamic routing for a cognitive conveyor. In: IEEE/ASME proceedings of the international conference on advanced intelligent mechatronics (AIM), pp 436–441Google Scholar
  13. Krühn T (2014) Dezentrale, verteilte Steuerung flächiger Fördersysteme für den innerbetrieblichen Materialfluss. Dissertation, Gottfried Wilhelm Leibniz Universität Hannover, HannoverGoogle Scholar
  14. Lamport L (1978) Time, clocks, and the ordering of events in a distributed system. Commun ACM 21(7):558–565CrossRefGoogle Scholar
  15. Leonhard JF (ed) (1999) Medienwissenschaft: ein Handbuch zur Entwicklung der Medien und Kommunikationsformen (vol 15, no 1). Walter de GruyterGoogle Scholar
  16. Le-Anh T, De Koster MBM (2006) A review of design and control of automated guided vehicle systems. Eur J Oper Res 171(1):1–23MathSciNetCrossRefGoogle Scholar
  17. Mayer S (2009) Development of a completely decentralized control system for modular continuous conveyor systems. Dissertation. Universität KarlsruheGoogle Scholar
  18. Mayer S, Furmans K (2010) Deadlock prevention in a completely decentralized controlled materials flow systems. Logist Res 2(3–4):147–158CrossRefGoogle Scholar
  19. Nielsen J (1994) Usability engineering. ElsevierGoogle Scholar
  20. Parker LE (2009) Path planning and motion coordination in multiple mobile robot teams. Encyclopedia of complexity and system science, pp 5783–5800Google Scholar
  21. Qiu L, Hsu WJ, Huang SY, Wang H (2002) Scheduling and routing algorithms for AGVs: a survey. Int J Prod Res 40(3):745–760CrossRefGoogle Scholar
  22. Raskin J (2000) The humane interface: new directions for designing interactive systems. Addison-Wesley ProfessionalGoogle Scholar
  23. Seibold Z, Stoll T, Furmans K (2013) Layout-optimized sorting of goods with decentralized controlled conveying modules. In: Proceedings of the 7th annual systems conference (SysCon). IEEE, pp 628–633Google Scholar
  24. Seibold Z, Gebhardt M, Stoll T (2014) Mehr Nutzen mit dem GridSorter. Hebezeuge Fördermittel 2014–5:260–262Google Scholar
  25. Seibold Z (2016) Logical time in decentralized control of material handling systems. PhD thesis. KIT Scientific Publishing, Karlsruhe. ISBN 978-3-7255-0567-9Google Scholar
  26. Seibold Z, Furmans K (2016) Plug&Play-Fördertechnik in der Industrie 4.0. In: Vogel-Heuser B, Bauernhansl T, ten Hompel M (eds) Handbuch Industrie 4.0, pp 1–17. Springer, Berlin, HeidelbergGoogle Scholar
  27. Stichweh H (2017) Aktorik für Industrie 4.0: Intelligente Antriebs-und Automatisierungslösungen für die energieeffiziente Intralogistik. In Handbuch Industrie 4.0 Bd. 3, pp 249–269. Springer, Berlin, HeidelbergGoogle Scholar
  28. Sun D, Kleiner A, Nebel B (2014) Behavior-based multi-robot collision avoidance. In: 2014 IEEE international conference on robotics and automation (ICRA), pp 1668–1673. IEEEGoogle Scholar
  29. Sun D, Geißer F, Nebel B (2016) Towards effective localization in dynamic environments. In: 2016 IEEE/RSJ international conference on intelligent robots and systems (IROS), pp 4517–4523. IEEEGoogle Scholar
  30. Tanenbaum AS (2011) Computer networks, 5th edn. Pearson Education, BostonzbMATHGoogle Scholar
  31. Tanenbaum AS, Bos H (2015) Modern operating systems, 4th edn, (Global edition ed.). Pearson, Boston, MassachusettsGoogle Scholar
  32. Thrun S, Burgard W, Fox D (2005) Probabilistic robotics. MIT PressGoogle Scholar
  33. Trenkle A, Seibold Z, Stoll T (2013) Safety requirements and safety functions for decentralized controlled autonomous systems. In: 2013 XXIV international symposium on information, communication and automation technologies (ICAT), pp 1–6. IEEEGoogle Scholar
  34. Trenkle A, Göhl M, Furmans K (2015) Interpretation of pointing gestures for the gesture controlled transportation robot “FiFi”. In: 2015 9th annual IEEE international systems conference (SysCon), pp 721–726. IEEEGoogle Scholar
  35. Trenkle A, Furmans K (2017) Der Mensch als Teil von Industrie 4.0: Interaktionsmechanismen bei autonomen Materialflusssystemen. In Handbuch Industrie 4.0 Bd. 3, pp 45–59. Springer, Berlin, HeidelbergGoogle Scholar
  36. Ullrich G (2014) Automated guided vehicle systems: a primer with practical applications. SpringerGoogle Scholar
  37. Uludag O (2014) GridPick: a high density puzzle based order picking system with decentralized control. Dissertation, Auburn University, Auburn, AlabamaGoogle Scholar
  38. Weyns D, Holvoet T, Schelfthout K, Wielemans J (2008) Decentralized control of automatic guided vehicles: applying multi-agent systems in practice. In: Companion to the 23rd ACM SIGPLAN conference on object-oriented programming systems languages and applications, pp 663–674. ACMGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  • Kai Furmans
    • 1
    Email author
  • Zäzilia Seibold
    • 1
  • Andreas Trenkle
    • 1
  1. 1.Institute of Material Handling and Logistics, Karlsruhe Institute of Technology (KIT)KarlsruheGermany

Personalised recommendations