Advertisement

P Systems with Activation and Blocking of Rules

  • Artiom Alhazov
  • Rudolf Freund
  • Sergiu Ivanov
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10867)

Abstract

We introduce new possibilities to control the application of rules based on the preceding applications, which can be defined in a general way for (hierarchical) P systems and the main known derivation modes. Computational completeness can be obtained even with non-cooperative rules and using both activation and blocking of rules, especially for the set modes of derivation. When we allow the application of rules to influence the application of rules in previous derivation steps, applying a non-conservative semantics for what we consider to be a derivation step, we can even “go beyond Turing”.

Notes

Acknowledgements

The authors are very grateful for the useful comments of the referees.

References

  1. 1.
    Alhazov, A.: A note on P systems with activators. In: Păun, Gh., Riscos-Núñez, A., Romero-Jiménez, A., Sancho-Caparrini, F. (eds.) Second Brainstorming Week on Membrane Computing, Sevilla, Spain, 2–7 February 2004, pp. 16–19 (2004)Google Scholar
  2. 2.
    Alhazov, A., Freund, R., Ivanov, S.: P systems with randomized right-hand sides of rules. In: 15th Brainstorming Week on Membrane Computing, Sevilla, Spain, January 31–February 5 2017 (2017)Google Scholar
  3. 3.
    Alhazov, A., Freund, R., Ivanov, S.: Hierarchical P systems with randomized right-hand sides of rules. In: Gheorghe, M., Rozenberg, G., Salomaa, A., Zandron, C. (eds.) CMC 2017. LNCS, vol. 10725, pp. 15–39. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-73359-3_2CrossRefGoogle Scholar
  4. 4.
    Alhazov, A., Freund, R., Ivanov, S.: Systems with activation and blocking of rules (2018)Google Scholar
  5. 5.
    Alhazov, A., Freund, R., Ivanov, S., Oswald, M.: Observations on P systems with states. In: Gheorghe, M., Petre, I., Pérez-Jiménez, M.J., Rozenberg, G., Salomaa, A. (eds.) Multidisciplinary Creativity. Hommage to Gheorghe Păun on His 65th Birthday, Spandugino (2015)Google Scholar
  6. 6.
    Alhazov, A., Freund, R., Verlan, S.: P systems working in maximal variants of the set derivation mode. In: Leporati, A., Rozenberg, G., Salomaa, A., Zandron, C. (eds.) CMC 2016. LNCS, vol. 10105, pp. 83–102. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-54072-6_6CrossRefGoogle Scholar
  7. 7.
    Alhazov, A., Ivanov, S., Rogozhin, Yu.: Polymorphic P systems. In: Gheorghe, M., Hinze, T., Păun, Gh., Rozenberg, G., Salomaa, A. (eds.) CMC 2010. LNCS, vol. 6501, pp. 81–94. Springer, Heidelberg (2010).  https://doi.org/10.1007/978-3-642-18123-8_9CrossRefGoogle Scholar
  8. 8.
    Aman, B., Csuhaj-Varjú, E., Freund, R.: Red–Green P automata. In: Gheorghe, M., Rozenberg, G., Salomaa, A., Sosík, P., Zandron, C. (eds.) CMC 2014. LNCS, vol. 8961, pp. 139–157. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-14370-5_9CrossRefGoogle Scholar
  9. 9.
    Arroyo, F., Baranda, A.V., Castellanos, J., Păun, Gh.: Membrane computing: the power of (rule) creation. J. Univ. Comput. Sci. 8, 369–381 (2002)Google Scholar
  10. 10.
    Budnik, P.: What Is and What Will Be. Mountain Math Software (2006)Google Scholar
  11. 11.
    Calude, C.S., Păun, Gh.: Bio-steps beyond turing. Biosystems 77(1–3), 175–194 (2004)CrossRefGoogle Scholar
  12. 12.
    Cavaliere, M., Freund, R., Oswald, M., Sburlan, D.: Multiset random context grammars, checkers, and transducers. Theor. Comput. Sci. 372(2–3), 136–151 (2007)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Cavaliere, M., Genova, D.: P systems with symport/antiport of rules. In: Păun, Gh., Riscos-Núñez, A., Romero-Jiménez, A., Sancho-Caparrini, F. (eds.) Second Brainstorming Week on Membrane Computing, Sevilla, Spain, 2–7 February 2004, pp. 102–116 (2004)Google Scholar
  14. 14.
    Cavaliere, M., Ionescu, M., Ishdorj, T.O.: Inhibiting/de-inhibiting rules in P systems. In: Pre-proceedings of the Fifth Workshop on Membrane Computing (WMC5), Milano, Italy, June 2004, pp. 174–183 (2004)Google Scholar
  15. 15.
    Dassow, J., Păun, Gh.: Regulated Rewriting in Formal Language Theory. Springer, Berlin (1989)CrossRefGoogle Scholar
  16. 16.
    Freund, R.: Control mechanisms on \(\#\)-context-free array grammars. In: Păun, Gh. (ed.) Mathematical Aspects of Natural and Formal Languages, pp. 97–137. World Scientific Publishing, Singapore (1994)CrossRefGoogle Scholar
  17. 17.
    Freund, R.: Generalized P-systems. In: Ciobanu, G., Păun, Gh. (eds.) FCT 1999. LNCS, vol. 1684, pp. 281–292. Springer, Heidelberg (1999).  https://doi.org/10.1007/3-540-48321-7_23CrossRefGoogle Scholar
  18. 18.
    Freund, R.: P systems working in the sequential mode on arrays and strings. Int. J. Found. Comput. Sci. 16(4), 663–682 (2005).  https://doi.org/10.1142/S0129054105003224MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Freund, R.: P automata: new ideas and results. In: Bordihn, H., Freund, R., Nagy, B., Vaszil, Gy. (eds.) Eighth Workshop on Non-Classical Models of Automata and Applications, NCMA 2016, Debrecen, Hungary, 29–30 August 2016. Proceedings, books@cg.at, vol. 321, pp. 13–40. ÖsterreichischeComputer Gesellschaft (2016)Google Scholar
  20. 20.
    Freund, R., Ivanov, S., Staiger, L.: Going beyond turing with P automata: partial adult halting and regular observer \(\omega \)-languages. In: Calude, C.S., Dinneen, M.J. (eds.) UCNC 2015. LNCS, vol. 9252, pp. 169–180. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-21819-9_12CrossRefzbMATHGoogle Scholar
  21. 21.
    Freund, R., Ivanov, S., Staiger, L.: Going beyond Turing with P automata: regular observer \(\omega \)-languages and partial adult halting. IJUC 12(1), 51–69 (2016)zbMATHGoogle Scholar
  22. 22.
    Freund, R., Kogler, M., Oswald, M.: A general framework for regulated rewriting based on the applicability of rules. In: Kelemen, J., Kelemenová, A. (eds.) Computation, Cooperation, and Life. LNCS, vol. 6610, pp. 35–53. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-20000-7_5CrossRefGoogle Scholar
  23. 23.
    Freund, R., Leporati, A., Mauri, G., Porreca, A.E., Verlan, S., Zandron, C.: Flattening in (Tissue) P systems. In: Alhazov, A., Cojocaru, S., Gheorghe, M., Rogozhin, Yu., Rozenberg, G., Salomaa, A. (eds.) CMC 2013. LNCS, vol. 8340, pp. 173–188. Springer, Heidelberg (2014).  https://doi.org/10.1007/978-3-642-54239-8_13CrossRefGoogle Scholar
  24. 24.
    Freund, R., Oswald, M., Staiger, L.: \(\omega \)-P automata with communication rules. In: Martín-Vide, C., Mauri, G., Păun, Gh., Rozenberg, G., Salomaa, A. (eds.) WMC 2003. LNCS, vol. 2933, pp. 203–217. Springer, Heidelberg (2004).  https://doi.org/10.1007/978-3-540-24619-0_15
  25. 25.
    Freund, R., Verlan, S.: A formal framework for static (Tissue) P systems. In: Eleftherakis, G., Kefalas, P., Păun, Gh., Rozenberg, G., Salomaa, A. (eds.) WMC 2007. LNCS, vol. 4860, pp. 271–284. Springer, Heidelberg (2007).  https://doi.org/10.1007/978-3-540-77312-2_17
  26. 26.
    Ivanov, S.: Polymorphic P systems with non-cooperative rules and no ingredients. In: Gheorghe, M., Rozenberg, G., Salomaa, A., Sosík, P., Zandron, C. (eds.) CMC 2014. LNCS, vol. 8961, pp. 258–273. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-14370-5_16CrossRefGoogle Scholar
  27. 27.
    Kudlek, M., Martín-Vide, C., Păun, Gh.: Toward a formal macroset theory. In: Calude, C.S., Păun, Gh., Rozenberg, G., Salomaa, A. (eds.) WMC 2000. LNCS, vol. 2235, pp. 123–133. Springer, Heidelberg (2001).  https://doi.org/10.1007/3-540-45523-X_7Google Scholar
  28. 28.
    van Leeuwen, J., Wiedermann, J.: Computation as an unbounded process. Theor. Comput. Sci. 429, 202–212 (2012).  https://doi.org/10.1016/j.tcs.2011.12.040MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Minsky, M.L.: Computation: Finite and Infinite Machines. Prentice-Hall Inc, Upper Saddle River (1967)zbMATHGoogle Scholar
  30. 30.
    Păun, Gh.: Computing with membranes. J. Comput. Syst. Sci. 61, 108–143 (1998)MathSciNetCrossRefGoogle Scholar
  31. 31.
    Păun, Gh., Rozenberg, G., Salomaa, A.: The Oxford Handbook of Membrane Computing. Oxford University Press Inc, New York (2010)Google Scholar
  32. 32.
    Sosík, P., Valík, O.: On evolutionary lineages of membrane systems. In: Freund, R., Păun, Gh., Rozenberg, G., Salomaa, A. (eds.) WMC 2005. LNCS, vol. 3850, pp. 67–78. Springer, Heidelberg (2006).  https://doi.org/10.1007/11603047_5CrossRefGoogle Scholar
  33. 33.
    Bulletin of the International Membrane Computing Society (IMCS). http://membranecomputing.net/IMCSBulletin/index.php
  34. 34.
    The P Systems Website. http://ppage.psystems.eu/

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute of Mathematics and Computer ScienceAcademy of Sciences of MoldovaChişinăuMoldova
  2. 2.Faculty of InformaticsTU WienViennaAustria
  3. 3.IBISCUniversité Évry, Université Paris-SaclayÉvryFrance

Personalised recommendations