Advertisement

Sharp Rate for the Dual Quantization Problem

  • Gilles Pagès
  • Benedikt Wilbertz
Chapter
Part of the Lecture Notes in Mathematics book series (LNM, volume 2215)

Abstract

In this paper we establish the sharp rate of the optimal dual quantization problem. The notion of dual quantization was introduced in Pagès and Wilbertz (SIAM J Numer Anal 50(2):747–780, 2012). Dual quantizers, at least in a Euclidean setting, are based on a Delaunay triangulation, the dual counterpart of the Voronoi tessellation on which “regular” quantization relies. This new approach to quantization shares an intrinsic stationarity property, which makes it very valuable for numerical applications.

We establish in this paper the counterpart for dual quantization of the celebrated Zador theorem, which describes the sharp asymptotics for the quantization error when the quantizer size tends to infinity. On the way we establish an extension of the so-called Pierce Lemma by a random quantization argument. Numerical results confirm our choices.

Keywords

Dual quantization Delaunay triangulation Zador Theorem Pierce Lemma random quantization 

References

  1. 1.
    J.F. Bonnans, Z. Cen, T. Christel, Energy contracts management by stochastic programming techniques. Ann. Oper. Res. 200, 199–222 (2012)MathSciNetCrossRefGoogle Scholar
  2. 2.
    J.A. Bucklew, G.L. Wise, Multidimensional asymptotic quantization theory with r th power distortion measures. IEEE Trans. Inf. Theory 28(2), 239–247 (1982)MathSciNetCrossRefGoogle Scholar
  3. 3.
    P. Capéraà, B. Van Cutsem, Méthodes et modèles en statistique non paramétrique (Les Presses de l’Université Laval, Sainte, 1988). Exposé fondamental. [Basic exposition], With a foreword by Capéraà, Van Cutsem and Alain BailleGoogle Scholar
  4. 4.
    P. Cohort, Limit theorems for random normalized distortion. Ann. Appl. Probab. 14(1), 118–143 (2004)MathSciNetCrossRefGoogle Scholar
  5. 5.
    S. Graf, H. Luschgy, Foundations of Quantization for Probability Distributions. Lecture Notes in Mathematics, vol. 1730 (Springer, Berlin, 2000)Google Scholar
  6. 6.
    R.M. Gray, D.L. Neuhoff, Quantization. IEEE Trans. Inf. 44(6), 2325–2383 (1998)CrossRefGoogle Scholar
  7. 7.
    H. Luschgy, G. Pagès, Functional quantization rate and mean regularity of processes with an application to Lévy processes. Ann. Appl. Probab. 18(2), 427–469 (2008)MathSciNetCrossRefGoogle Scholar
  8. 8.
    G. Pagès, J. Printems, www.quantize.maths-fi.com. Website devoted to quantization (2005)
  9. 9.
    G. Pagès, A. Sagna, Asymptotics of the maximal radius of an L r-optimal sequence of quantizers. Bernoulli 18(1), 360–389 (2012)MathSciNetCrossRefGoogle Scholar
  10. 10.
    G. Pagès, B. Wilbertz, Optimal Delaunay and Voronoi quantization schemes for pricing American style options, in Numerical Methods for Finance, ed. by R. Carmona, P. Del Moral, P. Hu, N. Oudjane (Springer, New York, 2011)zbMATHGoogle Scholar
  11. 11.
    G. Pagès, B. Wilbertz, Dual quantization for random walks with application to credit derivatives. J. Comput. Finance 16(2), 33–60 (2012)CrossRefGoogle Scholar
  12. 12.
    G. Pagès, B. Wilbertz, Intrinsic stationarity for vector quantization: foundation of dual quantization. SIAM J. Numer. Anal. 50(2), 747–780 (2012)MathSciNetCrossRefGoogle Scholar
  13. 13.
    J.N. Pierce, Asymptotic quantizing error for unbounded random variables. IEEE Trans. Inf. Theory 16(1), 81–83 (1970)MathSciNetCrossRefGoogle Scholar
  14. 14.
    V.T. Rajan, Optimality of the delaunay triangulation in \(\mathbb {R}^d\), in SCG ’91: Proceedings of the Seventh Annual Symposium on Computational Geometry (ACM, New York, 1991), pp. 357–363Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Laboratoire de Probabilités, Statistique et Modélisation, UMR 8002Sorbonne-UniversitéParisFrance
  2. 2.Trendiction S.A.LuxembourgLuxembourg

Personalised recommendations