Advertisement

Rule-Based Form for Stream Constraints

  • Kasper DokterEmail author
  • Farhad Arbab
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10852)

Abstract

Constraint automata specify protocols as labeled transition systems that preserve synchronization under composition. They have been used as a basis for tools, such as compilers and model checkers. Unfortunately, composition of transition systems suffers from state space and transition space explosions, which limits scalability of the tools based on constraint automata. In this work, we propose stream constraints as an alternative to constraint automata that avoids state space explosions. We introduce a rule-based form for stream constraints that can avoid transition space explosions. We provide sufficient conditions under which our approach avoids transition space explosions.

Notes

Acknowledgements

The authors thank Benjamin Lion for his help in developing a rule-based compiler and for generating Fig. 3(b).

References

  1. 1.
    Arbab, F.: Reo: a channel-based coordination model for component composition. Math. Struct. Comput. Sci. 14(3), 329–366 (2004).  https://doi.org/10.1017/S0960129504004153MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Arbab, F.: Puff, the magic protocol. In: Agha, G., Danvy, O., Meseguer, J. (eds.) Formal Modeling: Actors, Open Systems, Biological Systems. LNCS, vol. 7000, pp. 169–206. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-24933-4_9CrossRefGoogle Scholar
  3. 3.
    Arbab, F., Rutten, J.J.M.M.: A coinductive calculus of component connectors. In: Wirsing, M., Pattinson, D., Hennicker, R. (eds.) WADT 2002. LNCS, vol. 2755, pp. 34–55. Springer, Heidelberg (2003).  https://doi.org/10.1007/978-3-540-40020-2_2CrossRefGoogle Scholar
  4. 4.
    Baier, C., Blechmann, T., Klein, J., Klüppelholz, S.: A uniform framework for modeling and verifying components and connectors. In: Field, J., Vasconcelos, V.T. (eds.) COORDINATION 2009. LNCS, vol. 5521, pp. 247–267. Springer, Heidelberg (2009).  https://doi.org/10.1007/978-3-642-02053-7_13CrossRefzbMATHGoogle Scholar
  5. 5.
    Baier, C., Clarke, E.M., Hartonas-Garmhausen, V., Kwiatkowska, M., Ryan, M.: Symbolic model checking for probabilistic processes. In: Degano, P., Gorrieri, R., Marchetti-Spaccamela, A. (eds.) ICALP 1997. LNCS, vol. 1256, pp. 430–440. Springer, Heidelberg (1997).  https://doi.org/10.1007/3-540-63165-8_199CrossRefGoogle Scholar
  6. 6.
    Baier, C., Sirjani, M., Arbab, F., Rutten, J.J.M.M.: Modeling component connectors in Reo by constraint automata. Sci. Comput. Program. 61(2), 75–113 (2006).  https://doi.org/10.1016/j.scico.2005.10.008MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Bryant, R.E.: Graph-based algorithms for Boolean function manipulation. IEEE Trans. Comput. 35(8), 677–691 (1986).  https://doi.org/10.1109/TC.1986.1676819CrossRefzbMATHGoogle Scholar
  8. 8.
    Burch, J.R., Clarke, E.M., McMillan, K.L., Dill, D.L., Hwang, L.J.: Symbolic model checking: \(10~\hat{}~20\) states and beyond. Inf. Comput. 98(2), 142–170 (1992).  https://doi.org/10.1016/0890-5401(92)90017-AMathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Clarke, D., Proença, J., Lazovik, A., Arbab, F.: Channel-based coordination via constraint satisfaction. Sci. Comput. Program. 76(8), 681–710 (2011).  https://doi.org/10.1016/j.scico.2010.05.004CrossRefzbMATHGoogle Scholar
  10. 10.
    Clavel, M., Durán, F., Eker, S., Lincoln, P., Martí-Oliet, N., Meseguer, J., Talcott, C.L. (eds.): All About Maude - A High-Performance Logical Framework. LNCS, vol. 4350. Springer, Heidelberg (2007).  https://doi.org/10.1007/978-3-540-71999-1
  11. 11.
    Dokter, K., Arbab, F.: Treo: textual syntax of reo connectors. In: Proceedings of MeTRiD 2018 (2018, to appear)Google Scholar
  12. 12.
    Ehlers, R.: Minimising deterministic Büchi automata precisely using SAT solving. In: Strichman, O., Szeider, S. (eds.) SAT 2010. LNCS, vol. 6175, pp. 326–332. Springer, Heidelberg (2010).  https://doi.org/10.1007/978-3-642-14186-7_28CrossRefGoogle Scholar
  13. 13.
    Jongmans, S.T.Q.: Automata-theoretic protocol programming. Ph.D. thesis, Centrum Wiskunde & Informatica (CWI), Faculty of Science, Leiden University (2016). http://hdl.handle.net/1887/38223
  14. 14.
    Jongmans, S.-S.T.Q., Arbab, F.: Take Command of Your Constraints! In: Proceedings of Coordination Models and Languages - 17th IFIP WG 6.1 International Conference, COORDINATION 2015, Held as Part of the 10th International Federated Conference on Distributed Computing Techniques, DisCoTec 2015, Grenoble, France, June 2-4, 2015, pp. 117–132 (2015).  https://doi.org/10.1007/978-3-319-19282-6_8Google Scholar
  15. 15.
    Jongmans, S.T.Q., Arbab, F.: Centralized coordination vs. partially-distributed coordination with Reo and constraint automata. Sci. Comput. Program. (2017). http://www.sciencedirect.com/science/article/pii/S0167642317301259
  16. 16.
    Jongmans, S.-S.T.Q., Halle, S., Arbab, F.: Automata-based optimization of interaction protocols for scalable multicore platforms. In: Kühn, E., Pugliese, R. (eds.) COORDINATION 2014. LNCS, vol. 8459, pp. 65–82. Springer, Heidelberg (2014).  https://doi.org/10.1007/978-3-662-43376-8_5CrossRefGoogle Scholar
  17. 17.
    Jongmans, S.T.Q., Kappé, T., Arbab, F.: Constraint automata with memory cells and their composition. Sci. Comput. Program. 146, 50–86 (2017).  https://doi.org/10.1016/j.scico.2017.03.006CrossRefGoogle Scholar
  18. 18.
    Kemper, S.: SAT-based verification for timed component connectors. Sci. Comput. Program. 77(7–8), 779–798 (2012).  https://doi.org/10.1016/j.scico.2011.02.003CrossRefzbMATHGoogle Scholar
  19. 19.
    Klüppelholz, S.: Verification of Branching-Time and Alternating-Time Properties for Exogenous Coordination Models. Ph.D. thesis, Dresden University of Technology (2012). http://www.qucosa.de/recherche/frontdoor/?tx_slubopus4frontend[id]=8621
  20. 20.
    Kwiatkowska, M.Z., Norman, G., Sproston, J., Wang, F.: Symbolic model checking for probabilistic timed automata. Inf. Comput. 205(7), 1027–1077 (2007).  https://doi.org/10.1016/j.ic.2007.01.004MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Murata, T.: Petri nets: properties, analysis and applications. Proc. IEEE 77(4), 541–580 (1989)CrossRefGoogle Scholar
  22. 22.
    Pnueli, A., Rosner, R.: On the synthesis of a reactive module. In: Conference Record of the Sixteenth Annual ACM Symposium on Principles of Programming Languages, Austin, Texas, USA, 11–13 January 1989, pp. 179–190. ACM Press (1989). http://doi.acm.org/10.1145/75277.75293
  23. 23.
    Pnueli, A., Rosner, R.: Distributed reactive systems are hard to synthesize. In: 31st Annual Symposium on Foundations of Computer Science, St. Louis, Missouri, USA, 22–24 October 1990, vol. II, pp. 746–757. IEEE Computer Society (1990). https://doi.org/10.1109/FSCS.1990.89597
  24. 24.
    Proença, J., Clarke, D., de Vink, E.P., Arbab, F.: Dreams: a framework for distributed synchronous coordination. In: Ossowski, S., Lecca, P. (eds.) Proceedings of the ACM Symposium on Applied Computing, SAC 2012, Riva, Trento, Italy, 26–30 March 2012, pp. 1510–1515. ACM (2012). http://doi.acm.org/10.1145/2245276.2232017
  25. 25.
    Rutten, J.J.M.M.: Elements of stream calculus (an extensive exercise in coinduction). Electr. Notes Theor. Comput. Sci. 45, 358–423 (2001).  https://doi.org/10.1016/S1571-0661(04)80972-1CrossRefzbMATHGoogle Scholar

Copyright information

© IFIP International Federation for Information Processing 2018

Authors and Affiliations

  1. 1.Centrum Wiskunde & InformaticaAmsterdamNetherlands

Personalised recommendations