Advertisement

On Multiplicities in Tuple-Based Coordination Languages: The Bach Family of Languages and Its Expressiveness Study

  • Denis Darquennes
  • Jean-Marie JacquetEmail author
  • Isabelle Linden
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10852)

Abstract

Building upon previous work by the authors, this paper reviews and proposes extensions of Linda-like languages aiming at coordinating data-intensive distributed systems. The languages manipulate tokens associated in different ways with a notion of multiplicity. Thanks to De Boer and Palamidessi’s notion of modular embedding, we establish expressiveness hierarchies. We also discuss implementation issues and argue that the more expressive the language is the more expensive is its implementation.

Notes

Acknowledgment

We thank the anonymous reviewers for their comments and suggestions. We also thank A. Brogi and E. de Vink for helpful discussions on the expressiveness of coordination languages.

References

  1. 1.
    Banâtre, J.-P., Le Métayer, D.: Programming by multiset transformation. Commun. ACM 36(1), 98–111 (1993)CrossRefGoogle Scholar
  2. 2.
    Banâtre, J.-P., Le Métayer, D.: Gamma and the chemical reaction model: ten years after. In: Coordination Programming, pp. 3–41. Imperial College Press, London (1996)CrossRefGoogle Scholar
  3. 3.
    Bonsangue, M.M., Kok, J.N., Zavattaro, G.: Comparing coordination models based on shared distributed replicated data. In: ACM Symposium on Applied Computing, pp. 156–165 (1999)Google Scholar
  4. 4.
    De Bosschere, K., Jacquet, J.-M.: Multi-prolog: definition, operational semantics, and implementation. In: Warren, D.S. (ed.) Proceedings of the International Conference on Logic Programming, Budapest, Hongrie, pp. 299–314. The MIT Press (1993)Google Scholar
  5. 5.
    Bravetti, M., Gorrieri, R., Lucchi, R., Zavattaro, G.: Quantitative information in the tuple space coordination model. Theoret. Comput. Sci. 346(1), 28–57 (2005)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Bravetti, M., Gorrieri, R., Lucchi, R., Zavattaro, G.: Probabilistic and prioritized data retrieval in the Linda coordination model. In: De Nicola, R., Ferrari, G.-L., Meredith, G. (eds.) COORDINATION 2004. LNCS, vol. 2949, pp. 55–70. Springer, Heidelberg (2004).  https://doi.org/10.1007/978-3-540-24634-3_7CrossRefzbMATHGoogle Scholar
  7. 7.
    Bravetti, M., Zavattaro, G.: Service oriented computing from a process algebraic perspective. J. Logic Algebr. Program. 70(1), 3–14 (2007)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Brogi, A., Jacquet, J.-M.: Modeling coordination via asynchronous communication. In: Garlan, D., Le Métayer, D. (eds.) COORDINATION 1997. LNCS, vol. 1282, pp. 238–255. Springer, Heidelberg (1997).  https://doi.org/10.1007/3-540-63383-9_84CrossRefGoogle Scholar
  9. 9.
    Brogi, A., Jacquet, J.-M.: On the expressiveness of Linda-like concurrent languages. Electron. Not. Theoret. Comput. Sci. 16(2), 61–82 (1998)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Brogi, A., Jacquet, J.-M.: On the expressiveness of coordination models. In: Ciancarini, P., Wolf, A.L. (eds.) COORDINATION 1999. LNCS, vol. 1594, pp. 134–149. Springer, Heidelberg (1999).  https://doi.org/10.1007/3-540-48919-3_11CrossRefGoogle Scholar
  11. 11.
    Brogi, A., Jacquet, J.-M.: On the expressiveness of coordination via shared dataspaces. Sci. Comput. Program. 46(1–2), 71–98 (2003)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Brogi, A., Jacquet, J.-M., Linden, I.: On modeling coordination via asynchronous communication and enhanced matching. Electron. Not. Theoret. Comput. Sci. 68(3), 284–309 (2003)CrossRefGoogle Scholar
  13. 13.
    Busi, N., Gorrieri, R., Zavattaro, G.: On the Turing equivalence of Linda coordination primitives. Electron. Not. Theoret. Comput. Sci. 7, 75–75 (1997)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Busi, N., Gorrieri, R., Zavattaro, G.: A process algebraic view of Linda coordination primitives. Theoret. Comput. Sci. 192, 167–199 (1998)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Darquennes, D.: On Multiplicities in Coordination Languages. Ph.D. thesis, Faculty of Computer Science, University of Namur, Namur, Belgium (2017)Google Scholar
  16. 16.
    Darquennes, D., Jacquet, J.-M., Linden, I.: On distributed density in tuple-based coordination languages. In: Cámara, J., Proença, J. (eds.) Proceedings of the 13th International Workshop on Foundations of Coordination Languages and Self-Adaptive Systems. EPTCS, vol. 175, pp. 36–53. Springer (2015)MathSciNetCrossRefGoogle Scholar
  17. 17.
    de Boer, F.S., Palamidessi, C.: Embedding as a tool for language comparison. Inf. Comput. 108(1), 128–157 (1994)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Gelernter, D.: Generative communication in Linda. ACM Trans. Program. Lang. Syst. 7(1), 80–112 (1985)CrossRefGoogle Scholar
  19. 19.
    Groote, J.F., Mousavi, M.R.: Modeling and Analysis of Communicating Systems. MIT Press, Cambridge (2014)zbMATHGoogle Scholar
  20. 20.
    Jacquet, J.-M., Linden, I., Darquennes, D.: On density in coordination languages. In: Canal, C., Villari, M. (eds.) ESOCC 2013. CCIS, vol. 393, pp. 189–203. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-45364-9_16CrossRefGoogle Scholar
  21. 21.
    Jacquet, J.-M., Linden, I., Staicu, M.-O.: Blackboard rules: from a declarative reading to its application for coordinating context-aware applications in mobile ad hoc networks. Sci. Comput. Program. 115–116, 79–99 (2016)CrossRefGoogle Scholar
  22. 22.
    Jacquet, J.M., Linden, I., Darquennes, D.: On the introduction of density in tuple-space coordination languages. Sci. Comput. Program. 115–116, 149–176 (2016)CrossRefGoogle Scholar
  23. 23.
    Jongmans, S.-S.T.Q., Santini, F., Sargolzaei, M., Arbab, F., Afsarmanesh, H.: Automatic code generation for the orchestration of web services with Reo. In: De Paoli, F., Pimentel, E., Zavattaro, G. (eds.) ESOCC 2012. LNCS, vol. 7592, pp. 1–16. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-33427-6_1CrossRefGoogle Scholar
  24. 24.
    Linden, I., Jacquet, J.-M.: On the expressiveness of absolute-time coordination languages. In: De Nicola, R., Ferrari, G.-L., Meredith, G. (eds.) COORDINATION 2004. LNCS, vol. 2949, pp. 232–247. Springer, Heidelberg (2004).  https://doi.org/10.1007/978-3-540-24634-3_18CrossRefzbMATHGoogle Scholar
  25. 25.
    Linden, I., Jacquet, J.-M.: On the expressiveness of timed coordination via shared dataspaces. Electron. Not. Theoret. Comput. Sci. 180(2), 71–89 (2007)CrossRefGoogle Scholar
  26. 26.
    Linden, I., Jacquet, J.-M., De Bosschere, K., Brogi, A.: On the expressiveness of relative-timed coordination models. Electron. Not. Theoret. Comput. Sci. 97, 125–153 (2004)CrossRefGoogle Scholar
  27. 27.
    Linden, I., Jacquet, J.-M., De Bosschere, K., Brogi, A.: On the expressiveness of timed coordination models. Sci. Comput. Program. 61(2), 152–187 (2006)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Mariani, S.: Coordination of Complex Sociotechnical Systems - Self-organisation of Knowledge in MoK. Artificial Intelligence: Foundations, Theory, and Algorithms. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-47109-9CrossRefGoogle Scholar
  29. 29.
    Omicini, A.: Formal ReSpecT in the A&A perspective. Electron. Not. Theoret. Comput. Sci. 175(2), 97–117 (2007)CrossRefGoogle Scholar
  30. 30.
    Shapiro, E.: Embeddings among concurrent programming languages. In: Cleaveland, W.R. (ed.) CONCUR 1992. LNCS, vol. 630, pp. 486–503. Springer, Heidelberg (1992).  https://doi.org/10.1007/BFb0084811CrossRefGoogle Scholar
  31. 31.
    Tolksdorf, R.: Laura - a service-based coordination language. Sci. Comput. Program. 31(2–3), 359–381 (1998)CrossRefGoogle Scholar
  32. 32.
    Viroli, M., Casadei, M.: Biochemical tuple spaces for self-organising coordination. In: Field, J., Vasconcelos, V.T. (eds.) COORDINATION 2009. LNCS, vol. 5521, pp. 143–162. Springer, Heidelberg (2009).  https://doi.org/10.1007/978-3-642-02053-7_8CrossRefGoogle Scholar
  33. 33.
    Zavattaro, G.: On the incomparability of Gamma and Linda. In: Electronic Transactions on Numerical Analysis (1998)Google Scholar
  34. 34.
    Zavattaro, G.: Towards a hierarchy of negative test operators for generative communication. Electron. Not. Theoret. Comput. Sci. 16, 154–170 (1998)MathSciNetCrossRefGoogle Scholar

Copyright information

© IFIP International Federation for Information Processing 2018

Authors and Affiliations

  1. 1.Faculty of Computer ScienceUniversity of NamurNamurBelgium
  2. 2.Business Administration DepartmentUniversity of NamurNamurBelgium

Personalised recommendations