Advertisement

Bioactive Organoselenium Compounds and Therapeutic Perspectives

  • Eder João Lenardão
  • Claudio Santi
  • Luca Sancineto
Chapter

Abstract

After 1984, when ebselen was tested as a mimetic of the key antioxidant enzyme glutathione peroxidase (GPx), a plethora of organoselenium compounds have been synthesized and tested for various pharmacological purposes. Here a brief overview of the most important achievements in bioactive organoselenium small molecules is given, with particular emphasis on the GPx-like as well as to the antiviral, antibacterial, antifungal, and antiprotozoal activities. While historical information is given to help contextualize the content, the most recent literature is comprehensively discussed.

References

  1. 1.
    Reilly C (2006) Selenium in food and health. Springer Science + Business Media, LLC, New YorkGoogle Scholar
  2. 2.
    Shao S, Zheng B (2008) The biogeochemistry of selenium in Sunan grassland, Gansu, Northwest China, casts doubt on the belief that Marco Polo reported selenosis for the first time in history. Environ Geochem Health 30:307–314PubMedCrossRefGoogle Scholar
  3. 3.
    Frost DLV (1965) Selenium and poultry. Worlds Poult Sci J 21:139–156PubMedCrossRefGoogle Scholar
  4. 4.
    Gnadinger CB (1933) Selenium insecticide material for controlling red spider. Ind Eng Chem 25:633–637CrossRefGoogle Scholar
  5. 5.
    Nelson EM, Hurd-Karrer AM, Robinson WO (1933) Selenium as an insecticide. Science 78:124PubMedCrossRefGoogle Scholar
  6. 6.
    Nelson AA, Fitzhugh OG, Calvery HO (1943) Liver tumors following cirrhosis caused by selenium in rats. Cancer Res 3:230–236Google Scholar
  7. 7.
    Frost DLV, Olson OE (1972) The two faces of selenium - can selenophobia be cured? CRC Crit Rev Toxicol 1:467–514PubMedCrossRefGoogle Scholar
  8. 8.
    Casey CE (1988) Selenophilia. Proc Nutr Soc 47:55–62PubMedCrossRefGoogle Scholar
  9. 9.
    Vinceti M, Crespi CM, Malagoli C, Del Giovane C, Krogh V (2013) Friend or foe? The current epidemiologic evidence on selenium and human cancer risk. J Environ Sci Health C Environ Carcinog Ecotoxicol Rev 31:305–341PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Clark LC, Combs GF, Turnbull BW, Slate EH, Chalker DK, Chow J, Davis LS, Glover RA, Graham GF, Gross EG, Krongrad A, Lesher JL, Park HK, Sanders BB, Smith CL, Taylor JR (1996) Effects of selenium supplementation for cancer prevention in patients with carcinoma of the skin. A randomized controlled trial. Nutritional Prevention of Cancer Study Group. JAMA 276:1957–1963PubMedCrossRefGoogle Scholar
  11. 11.
    Lippman SM, Goodman PJ, Klein EA, Parnes HL, Thompson IM, Kristal AR, Santella RM, Probstfield JL, Moinpour CM, Albanes D, Taylor PR, Minasian LM, Hoque A, Thomas SM, Crowley JJ, Gaziano JM, Stanford JL, Cook ED, Fleshner NE, Lieber MM, Walther PJ, Khuri FR, Karp DD, Schwartz GG, Ford LG, Coltman CA (2005) Designing the selenium and vitamin E cancer prevention trial (SELECT). J Natl Cancer Inst 97:94–102PubMedCrossRefGoogle Scholar
  12. 12.
    Goossens M, Zeegers M, Van Poppel H, Joniau S, Ackaert K, Ameye F, Billiet I, Dillen K, Goeman L, Van Bruwaene S, Van der Aa F, Vekemans K, Buntinx F (2015) Phase III randomised chemoprevention study of selenium on the recurrence of non-invasive bladder cancer. The SELEnium and BLAdder Cancer Trial (SELEBLAT). Arch Public Heal 73:P5CrossRefGoogle Scholar
  13. 13.
    Vinceti M, Solovyev N, Mandrioli J, Crespi CM, Bonvicini F, Arcolin E, Georgoulopoulou E, Michalke B (2013) Cerebrospinal fluid of newly diagnosed amyotrophic lateral sclerosis patients exhibits abnormal levels of selenium species including elevated selenite. Neurotoxicology 38:25–32PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Rees K, Hartley L, Day C, Flowers N, Clarke A, Stranges S (2013) Selenium supplementation for the primary prevention of cardiovascular disease. Cochrane Database Syst Rev (1):CD009671Google Scholar
  15. 15.
    Rocourt CRB, Wu M, Chen BPC, Cheng WH (2013) The catalytic subunit of DNA-dependent protein kinase is downstream of ATM and feeds forward oxidative stress in the selenium-induced senescence response. J Nutr Biochem 24:781–787PubMedCrossRefGoogle Scholar
  16. 16.
    Vinceti M, Filippini T, Cilloni S, Bargellini A, Vergoni AV, Tsatsakis A, Ferrante M (2017) Health risk assessment of environmental selenium: emerging evidence and challenges. Mol Med Rep 15:3323–3335PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Schwarz K, Foltz CM (1957) Selenium as an integral part of factor 3 against dietary necrotic liver degeneration. J Am Chem Soc 79:3292–3293CrossRefGoogle Scholar
  18. 18.
    Pinsent J (1954) The need for selenite and molybdate in the formation of formic dehydrogenase by members of the coli-aerogenes group of bacteria. Biochem J 57:10–16PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Muth OH, Oldfield JE, Remmert LF, Schubert JR (1958) Effects of selenium and vitamin E on white muscle disease. Science 128:1090–1090PubMedCrossRefGoogle Scholar
  20. 20.
    Patterson EL, Milstrey R, Stokstad EL (1975) Effect of selenium in preventing exudative diathesis in chicks. Proc Soc Exp Biol Med 95:617–620CrossRefGoogle Scholar
  21. 21.
    Wu SH, Oldfield JE, Whanger PD, Weswig PH (1973) Effect of selenium, vitamin E, and antioxidants on testicular function in rats. Biol Reprod 8:625–629PubMedCrossRefGoogle Scholar
  22. 22.
    Rotruck JT, Pope AL, Ganther HE, Swanson AB, Hafeman DG, Hoekstra WG (1973) Selenium: biochemical role as a component of glutathione peroxidase. Science 179:588–590PubMedCrossRefGoogle Scholar
  23. 23.
    Flohe L, Günzler WA, Schock HH (1973) Glutathione peroxidase: a selenoenzyme. FEBS Lett 32:132–134PubMedCrossRefGoogle Scholar
  24. 24.
    Oh SH, Ganther HE, Hoekstra WG (1974) Selenium as a component of glutathione peroxidase isolated from ovine erythrocytes. Biochemistry 13:1825–1829PubMedCrossRefGoogle Scholar
  25. 25.
    Nakamura W, Hosoda S, Hayashi K (1974) Purification and properties of rat liver glutathione peroxidase. Biochim Biophys Acta Enzymol 358:251–261CrossRefGoogle Scholar
  26. 26.
    Turner DC, Stadtman TC (1973) Purification of protein components of the Clostridial glycine reductase system and characterization of protein A as a selenoprotein. Arch Biochem Biophys 154:366–381PubMedCrossRefGoogle Scholar
  27. 27.
    Andreesen JR, Ljungdahl LG (1973) Formate dehydrogenase of Clostridium thermoaceticum: incorporation of selenium-75, and the effects of selenite, molybdate, and tungstate on the enzyme. J Bacteriol 116:867–873PubMedPubMedCentralGoogle Scholar
  28. 28.
    Stadtman TC (1980) Selenium-dependent enzymes. Annu Rev Biochem 49:93–110PubMedCrossRefGoogle Scholar
  29. 29.
    Wendel A, Pilz W, Ladenstein R, Sawatzki G, Weser U (1975) Substrate-induced redox change of selenium in glutathione peroxidase studied by X-ray photoelectron spectroscopy. Biochim Biophys Acta Enzymol 377:211–215CrossRefGoogle Scholar
  30. 30.
    Forstrom JW, Zakowski JJ, Tappel AL (1978) Identification of the catalytic site of rat liver glutathione peroxidase as selenocysteine. Biochemistry 17:2639–2644PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Cone JE, Del Rio RM, Davis JN, Stadtman TC (1976) Chemical characterization of the selenoprotein component of Clostridial glycine reductase: identification of selenocysteine as the organoselenium moiety. Proc Natl Acad Sci U S A 73:2659–2663PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Brigelius-Flohé R, Flohé L (2017) Selenium and redox signaling. Arch Biochem Biophys 617:48–59PubMedCrossRefGoogle Scholar
  33. 33.
    Yang GQ, Ge KY, Chen JS, Chen XS (1988) Selenium-related endemic diseases and the daily selenium requirement of humans. World Rev Nutr Diet 55:98–152PubMedCrossRefGoogle Scholar
  34. 34.
    Vanderpas JB, Contempré B, Duale NL, Goossens W, Bebe N, Thorpe R, Ntambue K, Dumont J, Thilly CH, Diplock AT (1990) Iodine and selenium deficiency associated with cretinism in northern Zaire. Am J Clin Nutr 52:1087–1093PubMedCrossRefGoogle Scholar
  35. 35.
    Kirsi JJ, North JA, McKernan PA, Murray BK, Canonico PG, Huggins JW, Srivastava PC, Robins RK (1983) Broad-spectrum antiviral activity of 2-Beta-D-ribofuranosylselenazole-4-carboxamide, a new antiviral agent. Antimicrob Agents Chemother 24:353–361PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Müller A, Cadenas E, Graf P, Sies H (1984) A novel biologically active seleno-organic compound-1 glutathione peroxidase-like activity in vitro and antioxidant capacity of PZ 51 (Ebselen). Biochem Pharmacol 33:3235–3239PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Santi C, Marini F, Lenardão EJ (2017) Synthetic advances on bioactive selenium compounds. Chapter 2. Looking beyond the traditional idea of glutathione peroxidase mimics as antioxidants. In: organoselenium compounds in biology and medicine. Royal Society of Chemistry, Cambridge, pp 35–76CrossRefGoogle Scholar
  38. 38.
    Pacuła AJ, Mangiavacchi F, Sancineto L, Lenardão EJ, Ścianowski J, Santi C (2016) An update on “selenium containing compounds from poison to drug candidates: a review on the GPx-like activity”. Curr Chem Biol 9:97–112CrossRefGoogle Scholar
  39. 39.
    Lesser R, Weiss R (1924) Uber Selenhaltige Aromatische Verbindungen (VI). Chem Ber 57:1077–1082CrossRefGoogle Scholar
  40. 40.
    Singh N, Halliday AC, Thomas JM, Kuznetsova OV, Baldwin R, Woon ECY, Aley PK, Antoniadou I, Sharp T, Vasudevan SR, Churchill GC (2013) A safe lithium mimetic for bipolar disorder. Nat Commun 4:1332PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Mukherjee S, Weiner WS, Schroeder CE, Simpson DS, Hanson AM, Sweeney NL, Marvin RK, Ndjomou J, Kolli R, Isailovic D, Schoenen FJ, Frick DN (2014) Ebselen inhibits hepatitis C virus NS3 helicase binding to nucleic acid and prevents viral replication. ACS Chem Biol 9:2393–2403PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Yamaguchi T, Sano K, Takakura K, Saito I, Shinohara Y, Asano T, Yasuhara H (1998) Ebselen in acute ischemic stroke: a placebo-controlled, double-blind clinical trial. Ebselen Study Group. Stroke 29:12–17PubMedCrossRefGoogle Scholar
  43. 43.
    Saito I, Asano T, Sano K, Takakura K, Abe H, Yoshimoto T, Kikuchi H, Ohta T, Ishibashi S (1998) Neuroprotective effect of an antioxidant, ebselen, in patients with delayed neurological deficits after aneurysmal subarachnoid hemorrhage. Neurosurgery 42:269–277PubMedCrossRefGoogle Scholar
  44. 44.
    Ogawa A, Yoshimoto T, Kikuchi H, Sano K, Saito I, Yamaguchi T, Yasuhara H (1999) Ebselen in acute middle cerebral artery occlusion: a placebo-controlled, double-blind clinical trial. Cerebrovasc Dis 9:112–118PubMedCrossRefGoogle Scholar
  45. 45.
    Lynch E, Kil J (2009) Development of ebselen, a glutathione peroxidase mimic, for the prevention and treatment of noise-induced hearing loss. Semin Hear 30:47–55CrossRefGoogle Scholar
  46. 46.
    Masaki C, Sharpley AL, Godlewska BR, Berrington A, Hashimoto T, Singh N, Vasudevan SR, Emir UE, Churchill GC, Cowen PJ (2016) Effects of the potential lithium-mimetic, ebselen, on brain neurochemistry: a magnetic resonance spectroscopy study at 7 tesla. Psychopharmacology 233:1097–1104PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Beckman JA, Goldfine AB, Leopold JA, Creager MA (2016) Ebselen does not improve oxidative stress and vascular function in patients with diabetes: a randomized, crossover trial. Am J Physiol Heart Circ Physiol 311:H1431–H1436PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Parnham MJ, Sies H (2013) The early research and development of ebselen. Biochem Pharmacol 86:1248–1253PubMedCrossRefGoogle Scholar
  49. 49.
    Wang L, Fu J, Wang J, Jin C, Ren X, Tan Q, Li J, Yin H, Xiong K, Wang T, Liu X, Zeng H (2011) Selenium-containing thioredoxin reductase inhibitor ethaselen sensitizes non-small cell lung cancer to radiotherapy. Anti-Cancer Drugs 22:732–740PubMedCrossRefGoogle Scholar
  50. 50.
    Ye SF, Yang Y, Wu L, Ma WW, Zeng HH (2017) Ethaselen: a novel organoselenium anticancer agent targeting thioredoxin reductase 1 reverses cisplatin resistance in drug-resistant K562 cells by inducing apoptosis. J Zhejiang Univ Sci B 18:373–382PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Zhao F, Yan J, Deng S, Lan L, He F, Kuang B, Zeng H (2006) A thioredoxin reductase inhibitor induces growth inhibition and apoptosis in five cultured human carcinoma cell lines. Cancer Lett 236:46–53PubMedCrossRefGoogle Scholar
  52. 52.
    Xing F, Li S, Ge X, Wang C, Zeng H, Li D, Dong L (2008) The inhibitory effect of a novel organoselenium compound BBSKE on the tongue cancer Tca8113 in vitro and in vivo. Oral Oncol 44:963–969PubMedCrossRefGoogle Scholar
  53. 53.
    Moutet M, D’Alessio P, Malette P, Devaux V, Chaudière J (1998) Glutathione peroxidase mimics prevent TNFα- and neutrophil-induced endothelial alterations. Free Radic Biol Med 25:270–281PubMedCrossRefGoogle Scholar
  54. 54.
    Asaf R, Blum S, Miller-Lotan R, Levy A (2007) BXT-51072 and the prevention of myocardial ischemia-reperfusion injury. Lett Drug Des Discov 4:160–162CrossRefGoogle Scholar
  55. 55.
    Blum S, Asaf R, Guetta J, Miller-Lotan R, Asleh R, Kremer R, Levy NS, Berger FG, Aronson D, Fu X, Zhang R, Hazen SL, Levy AP (2007) Haptoglobin genotype determines myocardial infarct size in diabetic mice. J Am Coll Cardiol 49:82–87PubMedCrossRefGoogle Scholar
  56. 56.
    Santoro S, Azeredo JB, Nascimento V, Sancineto L, Braga AL, Santi C (2014) The green side of the moon: ecofriendly aspects of organoselenium chemistry. RSC Adv 4:31521–31535CrossRefGoogle Scholar
  57. 57.
    Bartolini D, Sancineto L, Fabro de Bem A, Tew KD, Santi C, Radi R, Toquato P, Galli F (2017) Chapter ten: Selenocompounds in cancer therapy: an overview. Adv Cancer Res 136:259–302PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Noguchi N (2016) Ebselen, a useful tool for understanding cellular redox biology and a promising drug candidate for use in human diseases. Arch Biochem Biophys 595:109–112PubMedCrossRefGoogle Scholar
  59. 59.
    Battin EE, Brumaghim J (2009) Antioxidant activity of sulfur and selenium: a review of reactive oxygen species scavenging, glutathione peroxidase, and metal-binding antioxidant mechanisms. Cell Biochem Biophys 55:1–23PubMedCrossRefGoogle Scholar
  60. 60.
    Kraus RJ, Foster SJ, Ganther HE (1983) Identification of selenocysteine in glutathione peroxidase by mass spectroscopy. Biochemistry 22:5853–5858PubMedCrossRefGoogle Scholar
  61. 61.
    Flohé L, Toppo S, Cozza G, Ursini F (2011) A comparison of thiol peroxidase mechanisms. Antioxid Redox Signal 15:763–780PubMedCrossRefGoogle Scholar
  62. 62.
    Bhabak KP, Mugesh G (2010) Functional mimics of glutathione peroxidase: bioinspired synthetic antioxidants. Acc Chem Res 43:1408–1419PubMedCrossRefGoogle Scholar
  63. 63.
    Caldwell KA, Tappel AL (1964) Reactions of seleno- and sulfoamino acids with hydroperoxides. Biochemistry 3:1643–1647PubMedCrossRefGoogle Scholar
  64. 64.
    Caldwell KA, Tappel AL (1965) Acceleration of sulfhydryl oxidations by selenocystine. Arch Biochem Biophys 112:196–200PubMedCrossRefGoogle Scholar
  65. 65.
    Paglia DE, Valentine WN (1967) Studies on the quantitative and qualitative characterization of erythrocyte glutathione peroxidase. J Lab Clin Investig 70:158–169Google Scholar
  66. 66.
    Yasuda K, Watanabe H, Yamazaki S, Toda S (1980) Glutathione peroxidase activity of D,L-selenocystine and selenocystamine. Biochem Biophys Res Commun 96:243–249PubMedCrossRefGoogle Scholar
  67. 67.
    Wilson SR, Zucker PA, Huang RRC, Spector A (1989) Development of synthetic compounds with glutathione peroxidase activity. J Am Chem Soc 111:5936–5939CrossRefGoogle Scholar
  68. 68.
    Engman L, Stern D, Cotgreave IA, Andersson CM (1992) Thiol peroxidase-activity of diaryl ditellurides as determined by a H1 NMR method. J Am Chem Soc 114:9737–9743CrossRefGoogle Scholar
  69. 69.
    Bell IM, Hilvert D (1993) Peroxide dependence of the semisynthetic enzyme selenosubtilisin. Biochemistry 32:13969–13973PubMedCrossRefGoogle Scholar
  70. 70.
    Iwaoka M, Tomoda S (1994) A model study on the effect of an amino group on the antioxidant activity of glutathione peroxidase. J Am Chem Soc 116:2557–2561CrossRefGoogle Scholar
  71. 71.
    Hildebraunt AG, Roots I (1975) Reduced nicotinamide adenine dinucleotide phosphate (NADPH)-dependent formation and breakdown of hydrogen peroxide during mixed function oxidation reactions in liver microsomes. Arch Biochem Biophys 171:385–397PubMedCrossRefGoogle Scholar
  72. 72.
    Haenen GR, De Rooij BM, Vermeulen NP, Bast A (1990) Mechanism of the reaction of ebselen with endogenous thiols: dihydrolipoate is a better cofactor than glutathione in the peroxidase activity of ebselen. Mol Pharmacol 37:412–422PubMedGoogle Scholar
  73. 73.
    Iwaoka M, Kumakura F (2008) Applications of water-soluble selenides and selenoxides to protein chemistry. Phosphorus Sulfur Silicon Relat Elem 183:1009–1017CrossRefGoogle Scholar
  74. 74.
    Kumakura F, Mishra B, Priyadarsini KI, Iwaoka M (2010) A water-soluble cyclic selenide with enhanced glutathione peroxidase-like catalytic activities. Eur J Org Chem 2010(3):440–445CrossRefGoogle Scholar
  75. 75.
    Tidei C, Piroddi M, Galli F, Santi C (2012) Oxidation of thiols promoted by PhSeZnCl. Tetrahedron Lett 53:232–234CrossRefGoogle Scholar
  76. 76.
    McNeil NMR, Press DJ, Mayder DM, Garnica P, Doyle LM, Back TG (2016) Enhanced glutathione peroxidase activity of water-soluble and polyethylene glycol-supported selenides, related spirodioxyselenuranes, and pincer selenuranes. J Org Chem 81:7884–7897PubMedCrossRefGoogle Scholar
  77. 77.
    Back TG, Dyck BP (1997) A novel camphor-derived selenenamide that acts as a glutathione peroxidase mimetic. J Am Chem Soc 119:2079–2083CrossRefGoogle Scholar
  78. 78.
    Elsherbini M, Hamama WS, Zoorob HH, Bhowmick D, Mugesh G, Wirth T (2014) Synthesis and antioxidant activities of novel chiral ebselen analogues. Heteroat Chem 25:320–325CrossRefGoogle Scholar
  79. 79.
    Wendel A, Fausel M, Safayhi H, Tiegs G, Otter R (1984) A novel biologically active seleno-organic compound--II. Activity of PZ 51 in relation to glutathione peroxidase. Biochem Pharmacol 33:3241–3245PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Müller A, Gabriel H, Sies H (1985) A novel biologically active selenoorganic compound—IV. Protective glutathione-dependent effect of PZ 51 (ebselen) against ADP-Fe induced lipid peroxidation in isolated hepatocytes. Biochem Pharmacol 34:1185–1189PubMedCrossRefGoogle Scholar
  81. 81.
    Cotgreave IA, Sandy MS, Berggren M, Moldéus PW, Smith MT (1987) Acetylcysteine and glutathione-dependent protective effect of PZ51 (ebselen) against diquat-induced cytotoxicity in isolated hepatocytes. Biochem Pharmacol 36:2899–2904PubMedCrossRefGoogle Scholar
  82. 82.
    Back TG, Moussa Z (2002) Remarkable activity of a novel cyclic seleninate ester as a glutathione peroxidase mimetic and its facile in situ generation from allyl 3-hydroxypropyl selenide. J Am Chem Soc 124:12104–12105PubMedCrossRefGoogle Scholar
  83. 83.
    Back TG, Moussa Z (2003) Diselenides and allyl selenides as glutathione peroxidase mimetics. Remarkable activity of cyclic seleninates produced in situ by the oxidation of allyl ω-hydroxyalkyl selenides. J Am Chem Soc 125:13455–13460PubMedCrossRefGoogle Scholar
  84. 84.
    Back TG, Moussa Z, Parvez M (2004) The exceptional glutathione peroxidase-like activity of di(3-hydroxypropyl) selenide and the unexpected role of a novel spirodioxaselenanonane intermediate in the catalytic cycle. Angew Chem Int Ed 43:1268–1270CrossRefGoogle Scholar
  85. 85.
    Sarma BK, Mugesh G (2005) Glutathione peroxidase (GPx)-like antioxidant activity of the organoselenium drug ebselen: unexpected complications with thiol exchange reactions. J Am Chem Soc 127:11477–11485PubMedCrossRefGoogle Scholar
  86. 86.
    Bhabak KP, Mugesh G (2007) Synthesis, characterization, and antioxidant activity of some ebselen analogues. Chem Eur J 13:4594–4601PubMedCrossRefGoogle Scholar
  87. 87.
    Shi H, Liu S, Miyake M, Liu KJ (2006) Ebselen induced C6 glioma cell death in oxygen and glucose deprivation. Chem Res Toxicol 19:655–660PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Bhowmick D, Srivastava S, D’Silva P, Mugesh G (2015) Highly efficient glutathione peroxidase and peroxiredoxin mimetics protect mammalian cells against oxidative damage. Angew Chem Int Ed 54:8449–8453CrossRefGoogle Scholar
  89. 89.
    Sies H, Arteel GE (2000) Interaction of peroxynitrite with selenoproteins and glutathione peroxidase mimics. Free Radic Biol Med 28:1451–1455PubMedCrossRefGoogle Scholar
  90. 90.
    Azad GK, Tomar RS (2014) Ebselen, a promising antioxidant drug: mechanisms of action and targets of biological pathways. Mol Biol Rep 41:4865–4879PubMedCrossRefGoogle Scholar
  91. 91.
    Nascimento V, Ferreira NL, Canto RFS, Schott KL, Waczuk EP, Sancineto L, Santi C, Rocha JBT, Braga AL (2014) Synthesis and biological evaluation of new nitrogen-containing diselenides. Eur J Med Chem 87:131–139PubMedCrossRefGoogle Scholar
  92. 92.
    Pacuła AJ, Kaczor KB, Antosiewicz J, Janecka A, Długosz A, Janecki T, Wojtczak A, Ścianowski J (2017) New chiral ebselen analogues with antioxidant and cytotoxic potential. Molecules 22:492CrossRefGoogle Scholar
  93. 93.
    Pacuła AJ, Kaczor KB, Wojtowicz A, Antosiewicz J, Janecka A, Długosz A, Janecki T, Ścianowski J (2016) New glutathione peroxidase mimetics—insights into antioxidant and cytotoxic activity. Bioorg Med Chem 25:126–131PubMedCrossRefGoogle Scholar
  94. 94.
    Xie L, Zheng W, Xin N, Xie JW, Wang T, Wang ZY (2012) Ebselen inhibits iron-induced Tau phosphorylation by attenuating DMT1 up-regulation and cellular iron uptake. Neurochem Int 61:334–340PubMedCrossRefGoogle Scholar
  95. 95.
    Kasraee B, Nikolic DS, Salomon D, Carraux P, Fontao L, Piguet V, Omrani GR, Sorg O, Saurat JH (2012) Ebselen is a new skin depigmenting agent that inhibits melanin biosynthesis and melanosomal transfer. Exp Dermatol 21:19–24PubMedCrossRefGoogle Scholar
  96. 96.
    Mahadevan J, Parazzoli S, Oseid E, Hertzel AV, Bernlohr DA, Vallerie SN, Liu CQ, Lopez M, Harmon JS, Robertson RP (2013) Ebselen treatment prevents islet apoptosis, maintains intranuclear Pdx-1 and MafA levels, and preserves -cell mass and function in ZDF rats. Diabetes 62:3582–3588PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Wang X, Yun JW, Lei XG (2014) Glutathione peroxidase mimic ebselen improves glucose-stimulated insulin secretion in murine islets. Antioxid Redox Signal 20:191–203PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Santi C, Tidei C, Scalera C, Piroddi M, Galli F (2013) Selenium containing compounds from poison to drug candidates: a review on the GPx-like activity. Curr Chem Biol 7:25–36CrossRefGoogle Scholar
  99. 99.
    Singh VP, Singh HB, Butcher RJ (2011) Synthesis and glutathione peroxidase-like activities of isoselenazolines. Eur J Org Chem 2011:5485–5497CrossRefGoogle Scholar
  100. 100.
    Luo Z, Sheng J, Sun Y, Lu C, Yan J, Liu A, Luo H, Huang L, Li X (2013) Synthesis and evaluation of multi-target-directed ligands against Alzheimer’s disease based on the fusion of donepezil and ebselen. J Med Chem 56:9089–9099PubMedCrossRefGoogle Scholar
  101. 101.
    Pacuła AJ, Ścianowski J, Aleksandrzak KB (2014) Highly efficient synthesis and antioxidant capacity of N-substituted benzisoselenazol-3(2H)-ones. RSC Adv 4:48959–48962CrossRefGoogle Scholar
  102. 102.
    Balkrishna SJ, Kumar S, Azad GK, Bhakuni BS, Panini P, Ahalawat N, Tomar RS, Detty MR, Kumar S (2014) An ebselen like catalyst with enhanced GPx activity via a selenol intermediate. Org Biomol Chem 12:1215–1219PubMedCrossRefGoogle Scholar
  103. 103.
    Wang Z, Wang Y, Li W, Liu Z, Luo Z, Sun Y, Wu R, Huang L, Li X (2015) Computer-assisted designed “selenoxy–chinolin”: a new catalytic mechanism of the GPx-like cycle and inhibition of metal-free and metal-associated Aβ aggregation. Dalt Trans 44:20913–20925CrossRefGoogle Scholar
  104. 104.
    Kumar S, Yan J, Poon J, Singh VP, Lu X, Karlsson Ott M, Engman L, Kumar S (2016) Multifunctional antioxidants: regenerable radical-trapping and hydroperoxide-decomposing ebselenols. Angew Chem Int Ed 55:3729–3733CrossRefGoogle Scholar
  105. 105.
    Satheeshkumar K, Mugesh G (2011) Synthesis and antioxidant activity of peptide-based ebselen analogues. Chem Eur J 17:4849–4857PubMedCrossRefGoogle Scholar
  106. 106.
    Wilson BAP, Wang H, Nacev BA, Mease RC, Liu JO, Pomper MG, Isaacs WB (2011) High-throughput screen identifies novel inhibitors of cancer biomarker - methylacyl coenzyme A racemase (AMACR/P504S). Mol Cancer Ther 10:825–838PubMedPubMedCentralCrossRefGoogle Scholar
  107. 107.
    Engman L, Tunek A, Hallberg M, Hallberg A (1994) Catalytic effects of glutathione peroxidase mimetics on the thiol reduction of cytochrome c. Chem Biol Interact 93:129–137PubMedCrossRefGoogle Scholar
  108. 108.
    Mugesh G, Singh HB (2000) Synthetic organoselenium compounds as antioxidants: glutathione peroxidase activity. Chem Soc Rev 29:347–357CrossRefGoogle Scholar
  109. 109.
    Hodage AS, Parashiva Prabhu C, Phadnis PP, Wadawale A, Priyadarsini KI, Jain VK (2012) Synthesis, characterization, structures and GPx mimicking activity of pyridyl and pyrimidyl based organoselenium compounds. J Organomet Chem 720:19–25CrossRefGoogle Scholar
  110. 110.
    Luchese C, Brandão R, Acker CI, Nogueira CW (2012) 2,2′-Dipyridyl diselenide is a better antioxidant than other disubstituted diaryl diselenides. Mol Cell Biochem 367:153–163PubMedCrossRefGoogle Scholar
  111. 111.
    Nogueira C, Soares F, Nascimento P, Muller D, Rocha JBT (2003) 2,3-Dimercaptopropane-1-sulfonic acid and meso-2,3-dimercaptosuccinic acid increase mercury- and cadmium-induced inhibition of δ-aminolevulinate dehydratase. Toxicology 184:85–95PubMedCrossRefGoogle Scholar
  112. 112.
    Singh VP, Poon J, Butcher RJ, Engman L (2014) Pyridoxine-derived organoselenium compounds with glutathione peroxidase-like and chain-breaking antioxidant activity. Chem Eur J 20:12563–12571PubMedCrossRefGoogle Scholar
  113. 113.
    Singh VP, Poon J, Butcher RJ, Lu X, Mestres G, Ott MK, Engman L (2015) Effect of a bromo substituent on the glutathione peroxidase activity of a pyridoxine-like diselenide. J Org Chem 80:7385–7395PubMedCrossRefGoogle Scholar
  114. 114.
    Parashiva Prabhu C, Phadnis PP, Wadawale AP, Indira Priyadarsini K, Jain VK (2012) Synthesis, characterization, structures and antioxidant activity of nicotinoyl based organoselenium compounds. J Organomet Chem 713:42–50CrossRefGoogle Scholar
  115. 115.
    Prabhu P, Singh BG, Noguchi M, Phadnis PP, Jain VK, Iwaoka M, Priyadarsini KI (2014) Stable selones in glutathione-peroxidase-like catalytic cycle of selenonicotinamide derivative. Org Biomol Chem 12:2404–2412PubMedCrossRefGoogle Scholar
  116. 116.
    Rafique J, Saba S, Canto R, Frizon T, Hassan W, Waczuk E, Jan M, Back D, Da Rocha J, Braga A (2015) Synthesis and biological evaluation of 2-picolylamide-based diselenides with non-bonded interactions. Molecules 20:10095–10109PubMedCrossRefGoogle Scholar
  117. 117.
    Selvakumar K, Shah P, Singh HB, Butcher RJ (2011) Synthesis, structure, and glutathione peroxidase-like activity of amino acid containing ebselen analogues and diaryl diselenides. Chem Eur J 17:12741–12755PubMedCrossRefGoogle Scholar
  118. 118.
    Bhabak KP, Mugesh G (2009) Amide-based glutathione peroxidase mimics: effect of secondary and tertiary amide substituents on antioxidant activity. Chem Asian J 4:974–983PubMedCrossRefGoogle Scholar
  119. 119.
    Mugesh G, Panda A, Singh HB, Punekar NS, Butcher RJ (2001) Glutathione peroxidase-like antioxidant activity of diaryl diselenides: a mechanistic study. J Am Chem Soc 123:839–850PubMedCrossRefGoogle Scholar
  120. 120.
    Bhowmick D, Mugesh G (2012) Tertiary amine-based glutathione peroxidase mimics: some insights into the role of steric and electronic effects on antioxidant activity. Tetrahedron 68:10550–10560CrossRefGoogle Scholar
  121. 121.
    Bhabak KP, Mugesh G (2009) Synthesis and structure-activity correlation studies of secondary- and tertiary-amine-based glutathione peroxidase mimics. Chem Eur J 15:9846–9854PubMedCrossRefGoogle Scholar
  122. 122.
    Ibrahim M, Hassan W, Anwar J, Deobald AM, Kamdem JP, Souza DO, Rocha JBT (2014) 1-(2-(2-(2-(1-Aminoethyl)phenyl)diselanyl)phenyl)ethanamine: an amino organoselenium compound with interesting antioxidant profile. Toxicol In Vitro 28:524–530PubMedCrossRefGoogle Scholar
  123. 123.
    Ibrahim M, Muhammad N, Naeem M, Deobald AM, Kamdem JP, Rocha JBT (2015) In vitro evaluation of glutathione peroxidase (GPx)-like activity and antioxidant properties of an organoselenium compound. Toxicol In Vitro 29:947–952PubMedCrossRefGoogle Scholar
  124. 124.
    Nogueira CW, Rocha JBT (2011) Toxicology and pharmacology of selenium: emphasis on synthetic organoselenium compounds. Arch Toxicol 85:1313–1359PubMedCrossRefGoogle Scholar
  125. 125.
    Mishra B, Barik A, Kunwar A, Kumbhare LB, Priyadarsini KI, Jain VK (2008) Correlating the GPx activity of selenocystine derivatives with one-electron redox reactions. Phosphorus Sulfur Silicon Relat Elem 183:1018–1025CrossRefGoogle Scholar
  126. 126.
    Alberto EE, Soares LC, Sudati JH, Borges ACA, Rocha JBT, Braga AL (2009) Efficient synthesis of modular amino acid derivatives containing selenium with pronounced GPx-like activity. Eur J Org Chem 2009:4211–4214CrossRefGoogle Scholar
  127. 127.
    Soares LC, Alberto EE, Schwab RS, Taube PS, Nascimento V, Rodrigues OED, Braga AL (2012) Ephedrine-based diselenide: a promiscuous catalyst suitable to mimic the enzyme glutathione peroxidase (GPx) and to promote enantioselective C–C coupling reactions. Org Biomol Chem 10:6595–6599PubMedCrossRefGoogle Scholar
  128. 128.
    Frizon TE, Rafique J, Saba S, Bechtold IH, Gallardo H, Braga AL (2015) Synthesis of functionalized organoselenium materials: selenides and diselenides containing cholesterol. Eur J Org Chem 2015:3470–3476CrossRefGoogle Scholar
  129. 129.
    Kumar S, Johansson H, Engman L, Valgimigli L, Amorati R, Fumo MG, Pedulli GF (2007) Regenerable chain-breaking 2,3-dihydrobenzo[B ]selenophene-5-ol antioxidants. J Org Chem 72:2583–2595PubMedCrossRefGoogle Scholar
  130. 130.
    Hodage AS, Phadnis PP, Wadawale A, Priyadarsini KI, Jain VK (2011) Synthesis, characterization and structures of 2-(3,5-dimethylpyrazol-1-yl)ethylseleno derivatives and their probable glutathione peroxidase (GPx) like activity. Org Biomol Chem 9:2992–2998PubMedCrossRefGoogle Scholar
  131. 131.
    Iwaoka M, Arai K (2013) From sulfur to selenium. A new research arena in chemical biology and biological chemistry. Curr Chem Biol 7:2–24CrossRefGoogle Scholar
  132. 132.
    Nascimento V, Alberto EE, Tondo DW, Dambrowski DW, Detty MR, Nome F, Braga AL (2012) GPx-like activity of selenides and selenoxides: experimental evidence for the involvement of hydroxy perhydroxy selenane as the active species. J Am Chem Soc 134:138–141PubMedCrossRefGoogle Scholar
  133. 133.
    Chakraborty S, Yadav SK, Subramanian M, Iwaoka M, Chattopadhyay S (2014) Dl-Trans-3,4-dihydroxy-1-selenolane (DHSred) heals indomethacin-mediated gastric ulcer in mice by modulating arginine metabolism. Biochim Biophys Acta Gen Subj 1840:3385–3392CrossRefGoogle Scholar
  134. 134.
    Brigelius-Flohé R, Maiorino M (2013) Glutathione peroxidases. Biochim Biophys Acta Gen Subj 1830:3289–3303CrossRefGoogle Scholar
  135. 135.
    Iwaoka M, Katakura A, Mishima J, Ishihara Y, Kunwar A, Priyadarsini K (2015) Mimicking the lipid peroxidation inhibitory activity of phospholipid hydroperoxide glutathione peroxidase (GPx4) by using fatty acid conjugates of a water-soluble selenolane. Molecules 20:12364–12375PubMedCrossRefGoogle Scholar
  136. 136.
    Iwaoka M, Sano N, Lin YY, Katakura A, Noguchi M, Takahashi K, Kumakura F, Arai K, Singh BG, Kunwar A, Priyadarsini KI (2015) Fatty acid conjugates of water-soluble (±)-trans-selenolane-3,4-diol: effects of alkyl chain length on the antioxidant capacity. Chembiochem 16:1226–1234PubMedCrossRefGoogle Scholar
  137. 137.
    Press DJ, Back TG (2016) The role of methoxy substituents in regulating the activity of selenides that serve as spirodioxyselenurane precursors and glutathione peroxidase mimetics. Can J Chem 94:305–311CrossRefGoogle Scholar
  138. 138.
    Menichetti S, Capperucci A, Tanini D, Braga AL, Botteselle GV, Viglianisi C (2016) One-pot access to benzo[b][1,4]selenazines from 2-aminoaryl diselenides. Eur J Org Chem 2016:3097–3102CrossRefGoogle Scholar
  139. 139.
    Prasad P, Singh H, Butcher R (2015) Cyclohexene-fused selenuranes and related derivatives. Molecules 20:12670–12685PubMedCrossRefGoogle Scholar
  140. 140.
    Braverman S, Cherkinsky M, Kalendar Y, Jana R, Sprecher M, Goldberg I (2013) Synthesis of water-soluble vinyl selenides and their high glutathione peroxidase (GPx)-like antioxidant activity. Synthesis (Stuttg) 46:119–125CrossRefGoogle Scholar
  141. 141.
    Lamani DS, Bhowmick D, Mugesh G (2012) Spirodiazaselenuranes: synthesis, structure and antioxidant activity. Org Biomol Chem 10:7933–7943PubMedCrossRefGoogle Scholar
  142. 142.
    McNeil N, McDonnell C, Hambrook M, Back TG (2015) Oxidation of disulfides to thiolsulfinates with hydrogen peroxide and a cyclic seleninate ester catalyst. Molecules 20:10748–10762PubMedCrossRefGoogle Scholar
  143. 143.
    Press DJ, McNeil NMR, Hambrook M, Back TG (2014) Effects of methoxy substituents on the glutathione peroxidase-like activity of cyclic seleninate esters. J Org Chem 79:9394–9401PubMedCrossRefGoogle Scholar
  144. 144.
    Bayse C, Shoaf A (2015) Effect of methoxy substituents on the activation barriers of the glutathione peroxidase-like mechanism of an aromatic cyclic seleninate. Molecules 20:10244–10252PubMedCrossRefGoogle Scholar
  145. 145.
    Feld JJ, Jacobson IM, Sulkowski MS, Poordad F, Tatsch F, Pawlotsky JM (2017) Ribavirin revisited in the era of direct-acting antiviral therapy for hepatitis C virus infection. Liver Int 37:5–18PubMedCrossRefGoogle Scholar
  146. 146.
    Kirsi JJ, McKernan PA, Burns NJ, North JA, Murray BK, Robins RK (1984) Broad-spectrum synergistic antiviral activity of selenazofurin and ribavirin. Antimicrob Agents Chemother 26:466–475PubMedPubMedCentralCrossRefGoogle Scholar
  147. 147.
    Gebeyehu G, Marquez VE, Van Cott A, Cooney DA, Kelley JA, Jayaram HN, Ahluwalia GS, Dion RL, Wilson YA, Johns DG (1985) Ribavirin, tiazofurin, and selenazofurin: mononucleotides and nicotinamide adenine dinucleotide analogs. Synthesis, structure, and interactions with IMP dehydrogenase. J Med Chem 28:99–105PubMedPubMedCentralCrossRefGoogle Scholar
  148. 148.
    Weber G, Nakamura H, Natsumeda Y, Szekeres T, Nagai M (1992) Regulation of GTP biosynthesis. Adv Enzym Regul 32:57–69CrossRefGoogle Scholar
  149. 149.
    Wray SK, Smith RH, Gilbert BE, Knight V (1986) Effects of selenazofurin and ribavirin and their 5′-triphosphates on replicative functions of influenza A and B viruses. Antimicrob Agents Chemother 29:67–72PubMedPubMedCentralCrossRefGoogle Scholar
  150. 150.
    Sidwell RW, Huffman JH, Call EW, Alaghamandan H, Dan Cook P, Robins RK (1986) Effect of selenazofurin on influenza A and B virus infections of mice. Antivir Res 6:343–353PubMedCrossRefGoogle Scholar
  151. 151.
    Franchetti P, Cappellacci L, Sheikha GA, Jayaram HN, Gurudutt VV, Sint T, Schneider BP, Jones WD, Goldstein BM, Perra G, De Montis A, Loi AG, La Colla P, Grifantini M (1997) Synthesis, structure, and antiproliferative activity of selenophenfurin, an inosine 5′-monophosphate dehydrogenase inhibitor analogue of selenazofurin. J Med Chem 40:1731–1737PubMedCrossRefGoogle Scholar
  152. 152.
    Morrey JD, Smee DF, Sidwell RW, Tseng C (2002) Identification of active antiviral compounds against a New York isolate of West Nile virus. Antivir Res 55:107–116PubMedCrossRefGoogle Scholar
  153. 153.
    UNAIDS (2016) Global HIV statistics: Fact sheet November 2016Google Scholar
  154. 154.
    Goudgaon NM, Schinazi RF (1991) Activity of acyclic 6-(phenylselenenyl)pyrimidine nucleosides against human immunodeficiency viruses in primary lymphocytes. J Med Chem 34:3305–3309PubMedCrossRefGoogle Scholar
  155. 155.
    Dworkin BM, Rosenthal WS, Wormser GP, Weiss L, Nunez M, Joline C, Herp A (1988) Abnormalities of blood selenium and glutathione peroxidase activity in patients with acquired immunodeficiency syndrome and AIDS-related complex. Biol Trace Elem Res 15:167–177PubMedCrossRefGoogle Scholar
  156. 156.
    Goudgaon NM, McMillan PF, Schinazi RF (1992) 1-(Ethoxymethyl)-6-(phenylselenenyl)pyrimidines with activity against human immunodeficiency virus types 1 and 2. Antivir Chem Chemother 3:263–266CrossRefGoogle Scholar
  157. 157.
    Nguyen MH, Schinazi RF, Shi C, Goudgaon NM, McKenna PM, Mellors JW (1994) Resistance of human immunodeficiency virus type 1 to acyclic 6-phenylselenenyl- and 6-phenylthiopyrimidines. Antimicrob Agents Chemother 38:2409–2414PubMedPubMedCentralCrossRefGoogle Scholar
  158. 158.
    Ni L, Schinazi RF, Boudinot FD (1995) Pharmacokinetics and toxicity of the human immunodeficiency virus inhibitor 1-ethoxymethyl-6-phenylselenenyl-5-ethyluracil in rodents. Antivir Res 27:39–47PubMedCrossRefGoogle Scholar
  159. 159.
    Du J, Surzhykov S, Lin JS, Newton MG, Cheng YC, Schinazi RF, Chu CK (1997) Synthesis, anti-human immunodeficiency virus and anti-hepatitis B virus activities of novel oxaselenolane nucleosides. J Med Chem 40:2991–2993PubMedCrossRefGoogle Scholar
  160. 160.
    Chu CK, Ma L, Olgen S, Pierra C, Du J, Gumina G, Gullen E, Cheng YC, Schinazi RF (2000) Synthesis and antiviral activity of oxaselenolane nucleosides. J Med Chem 43:3906–3912PubMedCrossRefGoogle Scholar
  161. 161.
    Jeong LS, Choi YN, Tosh DK, Choi WJ, Kim HO, Choi J (2008) Design and synthesis of novel 2′,3′-Dideoxy-4′-selenonucleosides as potential antiviral agents. Bioorg Med Chem 16:9891–9897PubMedCrossRefGoogle Scholar
  162. 162.
    Zhan P, Liu X, Fang Z, Pannecouque C, De Clercq E (2009) 1,2,3-Selenadiazole thioacetanilides: synthesis and anti-HIV activity evaluation. Bioorg Med Chem 17:6374–6879PubMedCrossRefGoogle Scholar
  163. 163.
    Baba M (1997) Cellular factors as alternative targets for inhibition of HIV-1. Antivir Res 33:141–152PubMedCrossRefGoogle Scholar
  164. 164.
    Thenin-Houssier S, de Vera IMS, Pedro-Rosa L, Brady A, Richard A, Konnick B, Opp S, Buffone C, Fuhrmann J, Kota S, Billack B, Pietka-Ottlik M, Tellinghuisen T, Choe H, Spicer T, Scampavia L, Diaz-Griffero F, Kojetin DJ, Valente ST (2016) Ebselen, a small-molecule capsid inhibitor of HIV-1 replication. Antimicrob Agents Chemother 60:2195–2208PubMedPubMedCentralCrossRefGoogle Scholar
  165. 165.
    Sancineto L, Mariotti A, Bagnoli L, Marini F, Desantis J, Iraci N, Santi C, Pannecouque C, Tabarrini O (2015) Design and synthesis of DiselenoBisBenzamides (DISeBAs) as nucleocapsid protein 7 (NCp7) inhibitors with anti-HIV activity. J Med Chem 58:9601–9614PubMedPubMedCentralCrossRefGoogle Scholar
  166. 166.
    Sancineto L, Iraci N, Tabarrini O, Santi S (2017) NCp7: targeting a multitasking protein for next-generation anti-HIV drug development Part 1: Covalent inhibitors. Drug Discov Today 23:260.  https://doi.org/10.1016/j.drudis.2017.10.017CrossRefPubMedGoogle Scholar
  167. 167.
    Iraci N, Tabarrini O, Santi C, Sancineto L (2018) NCp7: targeting a multitask protein for next-generation anti-HIV drug development Part 2. Noncovalent inhibitors and nucleic acid binders. Drug Discov Today 23:687.  https://doi.org/10.1016/j.drudis.2018.01.022CrossRefPubMedGoogle Scholar
  168. 168.
    Brown JC, Newcomb WW (2011) Herpesvirus capsid assembly: insights from structural analysis. Curr Opin Virol 1:142–149PubMedPubMedCentralCrossRefGoogle Scholar
  169. 169.
    Elion GB (1982) Mechanism of action and selectivity of acyclovir. Am J Med 73:7–13PubMedCrossRefGoogle Scholar
  170. 170.
    Sahu PK, Umme T, Yu J, Nayak A, Kim G, Noh M, Lee JY, Kim DD, Jeong LS (2015) Selenoacyclovir and selenoganciclovir: discovery of a new template for antiviral agents. J Med Chem 58:8734–8738PubMedCrossRefGoogle Scholar
  171. 171.
    Sahu PK, Umme T, Yu J, Kim G, Qu S, Naik S, Jeong L (2017) Structure-activity relationships of acyclic selenopurine nucleosides as antiviral agents. Molecules 22:1167CrossRefGoogle Scholar
  172. 172.
    Tosh DK, Choi WJ, Kim HO, Lee Y, Pal S, Hou X, Choi J, Choi S, Jeong LS (2008) Stereoselective synthesis and conformational study of novel 2′,3′-didehydro-2′,3′-dideoxy-4′-selenonucleosides. J Org Chem 73:4259–4262PubMedCrossRefGoogle Scholar
  173. 173.
    Sartori G, Jardim NS, Marcondes Sari MH, Dobrachinski F, Pesarico AP, Rodrigues LC, Cargnelutti J, Flores EF, Prigol M, Nogueira CW (2016) Antiviral action of diphenyl diselenide on herpes simplex virus 2 infection in female BALB/c mice. J Cell Biochem 117:1638–1648PubMedCrossRefGoogle Scholar
  174. 174.
    Sartori G, Jardim NS, Sari MHM, Flores EF, Prigol M, Nogueira CW (2017) Diphenyl diselenide reduces oxidative stress and toxicity caused by HSV-2 infection in mice. J Cell Biochem 118:1028–1037PubMedCrossRefGoogle Scholar
  175. 175.
    Gower E, Estes C, Blach S, Razavi-Shearer K, Razavi H (2014) Global epidemiology and genotype distribution of the hepatitis C virus infection. J Hepatol 61:S45–S57PubMedCrossRefGoogle Scholar
  176. 176.
    Cannalire R, Barreca ML, Manfroni G, Cecchetti V (2016) A journey around the medicinal chemistry of hepatitis C virus inhibitors targeting NS4B: from target to preclinical drug candidates. J Med Chem 59:16–41PubMedCrossRefGoogle Scholar
  177. 177.
    Gastaminza P, Whitten-Bauer C, Chisari FV (2010) Unbiased probing of the entire hepatitis C virus life cycle identifies clinical compounds that target multiple aspects of the infection. Proc Natl Acad Sci 107:291–296PubMedCrossRefGoogle Scholar
  178. 178.
    Chockalingam K, Simeon RL, Rice CM, Chen Z (2010) A cell protection screen reveals potent inhibitors of multiple stages of the hepatitis C virus life cycle. Proc Natl Acad Sci U S A 107:3764–3769PubMedPubMedCentralCrossRefGoogle Scholar
  179. 179.
    Wójtowicz H, Chojnacka M, Młochowski J, Palus J, Syper L, Hudecova D, Uher M, Piasecki E, Rybka M (2003) Functionalized alkyl and aryl diselenides as antimicrobial and antiviral agents: synthesis and properties. Farm 58:1235–1242CrossRefGoogle Scholar
  180. 180.
    Wójtowicz H, Kloc K, Maliszewska I, Młochowski J, Pietka-Ottlik M, Piasecki E (2004) Azaanalogues of ebselen as antimicrobial and antiviral agents: synthesis and properties. Farm 59:863–868CrossRefGoogle Scholar
  181. 181.
    Pietka-Ottlik M, Wójtowicz-Młochowska H, Kołodziejczyk K, Piasecki E, Młochowski J (2008) New organoselenium compounds active against pathogenic bacteria, fungi and viruses. Chem Pharm Bull (Tokyo) 56:1423–1427CrossRefGoogle Scholar
  182. 182.
    Pietka-Ottlik M, Potaczek P, Piasecki E, Mlochowski J (2010) Crucial role of selenium in the virucidal activity of benzisoselenazol-3(2H)-ones and related diselenides. Molecules 15:8214–8228PubMedCrossRefGoogle Scholar
  183. 183.
    Pietka-Ottlik M, Burda-Grabowska M, Woźna M, Waleńska J, Kaleta R, Zaczyńska E, Piasecki E, Giurg M (2017) Synthesis of new alkylated and methoxylated analogues of ebselen with antiviral and antimicrobial properties. ARKIVOC 2017:546–556CrossRefGoogle Scholar
  184. 184.
    Giurg M, Gołąb A, Suchodolski J, Kaleta R, Krasowska A, Piasecki E, Piętka-Ottlik M (2017) Reaction of bis[(2-chlorocarbonyl)phenyl] diselenide with phenols, aminophenols, and other amines towards diphenyl diselenides with antimicrobial and antiviral properties. Molecules 22:974CrossRefGoogle Scholar
  185. 185.
    Carocci M, Bakkali-Kassimi L (2012) The encephalomyocarditis virus. Virulence 3:351–367PubMedPubMedCentralCrossRefGoogle Scholar
  186. 186.
    Novella IS, Ebendick-Corpus BE, Zarate S, Miller EL (2007) Emergence of mammalian cell-adapted vesicular stomatitis virus from persistent infections of insect vector cells. J Virol 81:6664–6668PubMedPubMedCentralCrossRefGoogle Scholar
  187. 187.
    Bloom G, Merrett GB, Wilkinson A, Lin V, Paulin S (2017) Antimicrobial resistance and universal health coverage. BMJ Glob Health 2:e000518PubMedPubMedCentralCrossRefGoogle Scholar
  188. 188.
    Donlan RM, Costerton JW (2002) Biofilms: survival mechanisms of clinically relevant microorganisms. Clin Microbiol Rev 15:167–193PubMedPubMedCentralCrossRefGoogle Scholar
  189. 189.
    Nozawa R, Yokota T, Fujimoto T (1989) Susceptibility of methicillin-resistant Staphylococcus aureus to the selenium-containing compound 2-phenyl-1,2-benzoisoselenazol-3(2H)-one (PZ51). Antimicrob Agents Chemother 33:1388–1390PubMedPubMedCentralCrossRefGoogle Scholar
  190. 190.
    Barber M (1961) Methicillin-resistant staphylococci. J Clin Pathol 14:385–393PubMedPubMedCentralCrossRefGoogle Scholar
  191. 191.
    Mohammad H, Thangamani S, Seleem MN (2015) Antimicrobial peptides and peptidomimetics - potent therapeutic allies for staphylococcal infections. Curr Pharm Des 21:2073–2088PubMedCrossRefGoogle Scholar
  192. 192.
    Thangamani S, Younis W, Seleem MN (2015) Repurposing ebselen for treatment of multidrug-resistant staphylococcal infections. Sci Rep 5:11596PubMedPubMedCentralCrossRefGoogle Scholar
  193. 193.
    Thangamani S, Younis W, Seleem MN (2015) Repurposing clinical molecule ebselen to combat drug resistant pathogens. PLoS One 10:e0133877PubMedPubMedCentralCrossRefGoogle Scholar
  194. 194.
    Bender KO, Garland M, Ferreyra JA, Hryckowian AJ, Child MA, Puri AW, Solow-Cordero DE, Higginbottom SK, Segal E, Banaei N, Shen A, Sonnenburg JL, Bogyo M (2015) A small-molecule antivirulence agent for treating Clostridium difficile infection. Sci Transl Med 7:306ra148PubMedCrossRefPubMedCentralGoogle Scholar
  195. 195.
    Favrot L, Grzegorzewicz AE, Lajiness DH, Marvin RK, Boucau J, Isailovic D, Jackson M, Ronning DR (2013) Mechanism of inhibition of Mycobacterium tuberculosis antigen 85 by ebselen. Nat Commun 4:2748PubMedPubMedCentralCrossRefGoogle Scholar
  196. 196.
    Chiou J, Wan S, Chan KF, So PK, He D, Chan EW, Chan T, Wong K, Tao J, Chen S (2015) Ebselen as a potent covalent inhibitor of New Delhi metallo-β-lactamase (NDM-1). Chem Commun 51:9543–9546CrossRefGoogle Scholar
  197. 197.
    Lu J, Vlamis-Gardikas A, Kandasamy K, Zhao R, Gustafsson TN, Engstrand L, Hoffner S, Engman L, Holmgren A (2013) Inhibition of bacterial thioredoxin reductase: an antibiotic mechanism targeting bacteria lacking glutathione. FASEB J 27:1394–1403PubMedCrossRefGoogle Scholar
  198. 198.
    Macegoniuk K, Grela E, Palus J, Rudzińska-Szostak E, Grabowiecka A, Biernat M, Berlicki Ł (2016) 1,2-Benzisoselenazol-3(2 H )-one derivatives as a new class of bacterial urease inhibitors. J Med Chem 59:8125–8133PubMedCrossRefGoogle Scholar
  199. 199.
    Gustafsson TN, Osman H, Werngren J, Hoffner S, Engman L, Holmgren A (2016) Ebselen and analogs as inhibitors of Bacillus anthracis thioredoxin reductase and bactericidal antibacterials targeting Bacillus species, Staphylococcus aureus and Mycobacterium tuberculosis. Biochim Biophys Acta Gen Subj 1860:1265–1271CrossRefGoogle Scholar
  200. 200.
    Sancineto L, Piccioni M, De Marco S, Pagiotti R, Nascimento V, Braga AL, Santi C, Pietrella D (2016) Diphenyl diselenide derivatives inhibit microbial biofilm formation involved in wound infection. BMC Microbiol 16:220PubMedPubMedCentralCrossRefGoogle Scholar
  201. 201.
    Naik HRP, Naik HSB, Naik TRR, Naika HR, Gouthamchandra K, Mahmood R, Ahamed BMK (2009) Synthesis of novel benzo[h]quinolines: wound healing, antibacterial, DNA binding and in vitro antioxidant activity. Eur J Med Chem 44:981–989PubMedCrossRefGoogle Scholar
  202. 202.
    Deutch CE, Arballo ME, Cooks LN, Gomes JM, Williams TM, Aboul-Fadl T, Roberts JC (2006) Susceptibility of Escherichia coli to L-selenaproline and other L-proline analogues in laboratory culture media and normal human urine. Lett Appl Microbiol 43:392–398PubMedCrossRefGoogle Scholar
  203. 203.
    Deutch CE, Spahija I, Wagner CE (2014) Susceptibility of Escherichia coli to the toxic L-proline analogue L-selenaproline is dependent on two L-cystine transport systems. J Appl Microbiol 117:1487–1499PubMedCrossRefGoogle Scholar
  204. 204.
    Kumar S, Sharma N, Maurya IK, Bhasin AKK, Wangoo N, Brandão P, Félix V, Bhasin KK, Sharma RK (2016) Facile synthesis, structural evaluation, antimicrobial activity and synergistic effects of novel imidazo[1,2-a ]pyridine based organoselenium compounds. Eur J Med Chem 123:916–924PubMedCrossRefGoogle Scholar
  205. 205.
    Subha Rao SD, Joseph MP, Lavi R, Macaden R (2005) Infections related to vascular catheters in a pediatric intensive care unit. Indian Pediatr 42:667–672PubMedGoogle Scholar
  206. 206.
    Soteropoulos P, Vaz T, Santangelo R, Paderu P, Huang DY, Tamás MJ, Perlin DS (2000) Molecular characterization of the plasma membrane H(+)-ATPase, an antifungal target in Cryptococcus neoformans. Antimicrob Agents Chemother 44:2349–2355PubMedPubMedCentralCrossRefGoogle Scholar
  207. 207.
    Billack B, Santoro M, Lau-Cam C (2009) Growth inhibitory action of ebselen on fluconazole-resistant Candida albicans: role of the plasma membrane H + -ATPase. Microb Drug Resist 15:77–83PubMedCrossRefGoogle Scholar
  208. 208.
    Loreto ÉS, Nunes Mario DA, Santurio JM, Alves SH, Nogueira CW, Zeni G (2011) In vitro antifungal evaluation and structure-activity relationship of diphenyl diselenide and synthetic analogues. Mycoses 54:e572–e576PubMedCrossRefGoogle Scholar
  209. 209.
    Rosseti IB, Wagner C, Fachinetto R, Taube Junior P, Costa MS (2011) Candida albicans growth and germ tube formation can be inhibited by simple diphenyl diselenides [(PhSe)2, (MeOPhSe)2, (P-cl-PhSe)2, (F3CPhSe)2] and diphenyl ditelluride. Mycoses 54:506–513PubMedCrossRefGoogle Scholar
  210. 210.
    Denardi LB, Mario DAN, de Loreto ÉS, Nogueira CW, Santurio JM, Alves SH (2013) Antifungal activities of diphenyl diselenide alone and in combination with fluconazole or amphotericin B against Candida glabrata. Mycopathologia 176:165–169PubMedCrossRefGoogle Scholar
  211. 211.
    Kolifarhood G, Raeisi A, Ranjbar M, Haghdoust AA, Schapira A, Hashemi S, Masoumi-Asl H, Mozafar Saadati H, Azimi S, Khosravi N, Kondrashin A (2017) Prophylactic efficacy of primaquine for preventing Plasmodium falciparum and Plasmodium vivax parasitaemia in travelers: a meta-analysis and systematic review. Travel Med Infect Dis 17:5–18PubMedCrossRefGoogle Scholar
  212. 212.
    Harris MT, Walker DM, Drew ME, Mitchell WG, Dao K, Schroeder CE, Flaherty DP, Weiner WS, Golden JE, Morris JC (2013) Interrogating a hexokinase-selected small-molecule library for inhibitors of Plasmodium falciparum hexokinase. Antimicrob Agents Chemother 57:3731–3737PubMedPubMedCentralCrossRefGoogle Scholar
  213. 213.
    Hüther AM, Zhang Y, Sauer A, Parnham MJ (1989) Antimalarial properties of ebselen. Parasitol Res 75:353–360PubMedCrossRefGoogle Scholar
  214. 214.
    Hide G (1999) History of sleeping sickness in East Africa. Clin Microbiol Rev 12:112–125PubMedPubMedCentralGoogle Scholar
  215. 215.
    Joice AC, Harris MT, Kahney EW, Dodson HC, Maselli AG, Whitehead DC, Morris JC (2013) Exploring the mode of action of ebselen in Trypanosoma brucei hexokinase inhibition. Int J Parasitol Drugs Drug Resist 3:154–160PubMedPubMedCentralCrossRefGoogle Scholar
  216. 216.
    Gordhan HM, Patrick SL, Swasy MI, Hackler AL, Anayee M, Golden JE, Morris JC, Whitehead DC (2017) Evaluation of substituted ebselen derivatives as potential trypanocidal agents. Bioorg Med Chem Lett 27:537–541PubMedCrossRefGoogle Scholar
  217. 217.
    Sundar S, Chakravarty J (2013) Leishmaniasis: an update of current pharmacotherapy. Expert Opin Pharmacother 14:53–63PubMedCrossRefGoogle Scholar
  218. 218.
    Araújo AP, Rocha OGF, Mayrink W, Machado-Coelho GLL (2008) The influence of copper, selenium and zinc on the response to the Montenegro skin test in subjects vaccinated against American cutaneous leishmaniasis. Trans R Soc Trop Med Hyg 102:64–69PubMedCrossRefGoogle Scholar
  219. 219.
    Baquedano Y, Alcolea V, Toro MÁ, Gutiérrez KJ, Nguewa P, Font M, Moreno E, Espuelas S, Jiménez-Ruiz A, Palop JA, Plano D, Sanmartín C (2016) Novel heteroaryl selenocyanates and diselenides as potent antileishmanial agents. Antimicrob Agents Chemother 60:3802–3812PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Eder João Lenardão
    • 1
  • Claudio Santi
    • 2
  • Luca Sancineto
    • 3
  1. 1.CCQFA - LASOLUniversidade Federal de PelotasPelotasBrazil
  2. 2.Department of Pharmaceutical SciencesUniversità degli Studi di PerugiaPerugiaItaly
  3. 3.Section of Heterorganic ChemistryCentre of Molecular and Macromolecular Studies, Polish Academy of SciencesŁódźPoland

Personalised recommendations