Advertisement

A Framework for (De)composing with Boolean Automata Networks

  • Kévin Perrot
  • Pacôme Perrotin
  • Sylvain Sené
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10881)

Abstract

Boolean automata networks (BANs) are a generalisation of Boolean cellular automata. In such, any theorem describing the way BANs compute information is a strong tool that can be applied to a wide range of models of computation. In this paper we explore a way of working with BANs which involves adding external inputs to the base model (via modules), and more importantly, a way to link networks together using the above mentioned inputs (via wirings). Our aim is to develop a powerful formalism for BAN (de)composition. We formulate two results: the first one shows that our modules/wirings definition is complete; the second one uses modules/wirings to prove simulation results amongst BANs.

Keywords

Boolean automata networks Modules Wirings Simulation 

Notes

Acknowledgements

This work has been supported “Investissement d’avenir” program ANR-16-CONV-00001 and PACA Project Fri 2015_01134.

References

  1. 1.
    Alcolei, A., Perrot, K., Sené, S.: On the flora of asynchronous locally non-monotonic Boolean automata networks. In: Proceedings of SASB 2015, ENTCS, vol. 326, pp. 3–25 (2016)CrossRefGoogle Scholar
  2. 2.
    Alon, U.: Biological networks: the tinkerer as an engineer. Science 301, 1866–1867 (2003)CrossRefGoogle Scholar
  3. 3.
    Aracena, J., Gómez, L., Salinas, L.: Limit cycles and update digraphs in Boolean networks. Discrete Appl. Math. 161, 1–12 (2013)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Bernot, G., Tahi, F.: Behaviour preservation of a biological regulatory network when embedded into a larger network. Fund. Inform. 91, 463–485 (2009)MathSciNetzbMATHGoogle Scholar
  5. 5.
    Cook, M.: Universality in elementary cellular automata. Complex Syst. 15, 1–40 (2004)MathSciNetzbMATHGoogle Scholar
  6. 6.
    Bornholdt, S., Davidich, M.I.: Boolean network model predicts cell cycle sequence of fission yeast. PLoS One 3, e1672 (2008)CrossRefGoogle Scholar
  7. 7.
    Delaplace, F., Klaudel, H., Melliti, T., Sené, S.: Analysis of modular organisation of interaction networks based on asymptotic dynamics. In: Gilbert, D., Heiner, M. (eds.) CMSB 2012. LNCS, pp. 148–165. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-33636-2_10CrossRefGoogle Scholar
  8. 8.
    Demongeot, J., Goles, E., Morvan, M., Noual, M., Sené, S.: Attraction basins as gauges of robustness against boundary conditions in biological complex systems. PLoS One 5, e11793 (2010)CrossRefGoogle Scholar
  9. 9.
    Feder, T.: Stable networks and product graphs. Ph.D thesis, Stanford University (1990)Google Scholar
  10. 10.
    Fogelman, F., Goles, E., Weisbuch, G.: Transient length in sequential iteration of threshold functions. Discrete Appl. Math. 6, 95–98 (1983)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Goles, E., Salinas, L.: Comparison between parallel and serial dynamics of Boolean networks. Theor. Comput. Sci. 396, 247–253 (2008)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Kauffman, S.A.: Metabolic stability and epigenesis in randomly constructed genetic nets. J. Theor. Biol. 22, 437–467 (1969)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Milo, R., Shen-Orr, S., Itzkovitz, S., Kashtan, N., Chklovskii, D., Alon, U.: Network motifs: simple building blocks of complex networks. Science 298, 824–827 (2002)CrossRefGoogle Scholar
  14. 14.
    Noual, M.: Updating Automata Networks. Ph.D thesis, École Normale Supérieure de Lyon (2012)Google Scholar
  15. 15.
    Robert, F.: Discrete Iterations: A Metric Study. Springer, Heidelberg (1986).  https://doi.org/10.1007/978-3-642-61607-5CrossRefGoogle Scholar
  16. 16.
    Siebert, H.: Dynamical and structural modularity of discrete regulatory networks. In: Proceedings of COMPMOD 2009, EPTCS, vol. 6, pp. 109–124 (2009)CrossRefGoogle Scholar
  17. 17.
    Thomas, R.: Boolean formalization of genetic control circuits. J. Theor. Biol. 42, 563–585 (1973)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Kévin Perrot
    • 1
  • Pacôme Perrotin
    • 1
  • Sylvain Sené
    • 1
  1. 1.Aix-Marseille University, Toulon University, CNRS, LISMarseilleFrance

Personalised recommendations