Advertisement

Bioactive Compounds and Pharmaceutical Excipients Derived from Animals, Marine Organisms, Microorganisms, Minerals, Synthesized Compounds, and Pharmaceutical Drugs

  • A. N. M. Alamgir
Chapter
Part of the Progress in Drug Research book series (PDR, volume 74)

Abstract

Many bioactive compounds and pharmaceutical excipients are derived from animals, marine organisms, microorganisms, minerals, etc. Glandular products, liver extract, fish liver oils, musk, bees’ wax, certain hormones, enzymes, antitoxins, etc., are drugs obtained from animal sources. With the advent of Genentech, insulin, drugs for hemophilia and anemia, protein-based cancer drug, etc., are produced in genetically engineered organisms. The potent medicinal usage of the bioactive compounds, viz., steroids, terpenoids, isoprenoid, and non-isoprenoid compounds, quinones, brominated compounds, nitrogen heterocyclics, nitrogen-sulfur heterocyclics, antibiotics, etc., have been discovered in recent years from marine poriferans, cnidarians, annelids, arthropods, mollusks, echinoderms, vertebrates, seaweeds (marine macroalgae), seagrasses (submersed marine angiosperms), and microorganisms with therapeutic activities such as antioxidant, antibacterial, anti-inflammatory, anticarcinogenic properties. Bioactive compounds obtained from minerals include kaolin, calomel, iodine, iron, gold, sulfur, selenium, etc. Synthetic pharmaceutical drugs (bioactive compounds) of different categories including semisynthetic anticancer drug––Taxol, therapeutic peptides, and proteins––insulin and similar other protein products with the application of recombinant DNA technology and many other drugs are produced.

Keywords

Bioactive compounds Pharmaceutical excipients Animal Marine organisms Microorganisms Minerals Recombinant DNA technology 

References

  1. Abd El-Baky HH, El-Baz FK, El Baroty GS (2010) Enhancing antioxidant availability in wheat grains from plants grown under seawater stress in response to microalgae extract treatments. J Sci Food Agric 90:299–303PubMedCrossRefPubMedCentralGoogle Scholar
  2. Abe M, Inoue D, Matsunaga K, Ohizumi Y, Ueda H, Asano T et al (2002) Goniodomin A, an antifungal polyether macrolide, exhibits antiangiogenic activities viainhibition of actin reorganization in endothelial cells. J Cell Physiol 190:109–116PubMedCrossRefPubMedCentralGoogle Scholar
  3. Acott C, Williamson J (1996) Sea snake. In: Williamson JA, Fenner PJ, Burnett JW, Rifkin JF (eds) Venomous and poisonous marine animals: a medical and biological handbook. University of New South Wales Press, Sydney, pp 396–402Google Scholar
  4. Adarme-Vega TC, Thomas-Hall SR, Lim DK, Schenk PM (2014) Effects of long chain fatty acid synthesis and associated gene expression in microalga Tetraselmis sp. Mar Drugs 12:3381–3398PubMedPubMedCentralCrossRefGoogle Scholar
  5. Agnihotri SA, Mallikarjuna NN, Aminabhavi TM (2004) Recent advances on chitosan-based micro- and nanoparticles in drug delivery. J Controlled Release 100(1):5–28CrossRefGoogle Scholar
  6. Alhanout K, Brunel JM, Ranque S, Rolain JM (2010a) In vitro antifungal activity of aminosterols against moulds isolated from cystic fibrosis patients. J Antimicrob Chemother 65(6):1307–1309PubMedCrossRefPubMedCentralGoogle Scholar
  7. Alhanout K, Rolain JM, Brunel JM (2010b) Squalamine as an example of a new potent antimicrobial agents class: a critical review. Curr Med Chem 17(32):3909–39017PubMedCrossRefPubMedCentralGoogle Scholar
  8. Ang KKH, Holmes MJ, Higa T, Hamann MT, Kara UAK (2000) In vivo antimalarial activity of the beta-carboline alkaloid manzamine A. Antimicrob Agents Chemother 44(6):1645–1649PubMedPubMedCentralCrossRefGoogle Scholar
  9. Anonymous (1999) Merck manual of diagnosis and therapy. In: Berkow R, Beers MH (eds) 17th ed. Whitehouse station, NJ: Merck Company, Chapter 154, pp 1127–1128Google Scholar
  10. Anonymous (2004) United Kingdom. National Prescribing Centre. Task force on medicines partnership. Drugs of porcine origin and their clinical alternatives. An introductory guide. March 2004. Available from: http://www.mcb.org.uk/uploads/PBEnglish.pdf
  11. Anonymous (2006) FDA: You’re eating crushed bug juice. Cochineal extract, carmine should be listed on labels, officials say. Friday, January 27, 2006; Posted: 9:14 p.m. EST (02:14 GMT)Google Scholar
  12. Anonymous (2012) Food Standards Agency—Current EU approved additives and their E Numbers. Food.gov.uk. 14 March 2012Google Scholar
  13. Arnold TM, Targett NM (2002) Marine tannins: the importance of mechanistic framework for predicting ecological roles. J Chem Ecol 28(10):1919–1934PubMedCrossRefPubMedCentralGoogle Scholar
  14. Auyoung E (1999) A brief history and overview of Tetrodotoxin (TTX) MCB165-molecular neurobiology and neurochemistry, pp 1–2. www.sulcus.berkeley.edu/mcb/165-001/index.html
  15. Avery MA, Chong WKM, Jennings-White C (1992) Stereoselective total synthesis of (+)-artemisinin, the antimalarial constituent of Artemisia annua L. J Am Chem Soc 114:974–979CrossRefGoogle Scholar
  16. Bae SY, Yim JH, Lee HK, Pyo S (2006) Activation of murine peritoneal macrophages by sulphated exopolysaccharide from marine microalga Gyrodinium impudicum (strain KG03): involvement of the NF-kappa B and JNK pathway. Int Immunopharmacol 6:473–484PubMedCrossRefPubMedCentralGoogle Scholar
  17. Batista AP, Gouveia L, Bandarra-Narcisa M, Franco JM, Raymundo A (2013) Comparison of microalgal biomass profiles as novel functional ingredient for food products. Algal Res 2:164–173CrossRefGoogle Scholar
  18. Beltron EC, Nielan BA (2000) Geographical segregation of neurotoxin-producing cyanobacterium Anabaena circinalis. Appl Environ Microbiol 66(10):4468–4474CrossRefGoogle Scholar
  19. Ben Kahla-Nakbi A, Haouas N, El Ouaer A, Guerbej H, Ben Mustapha K, Babba H (2010) Screening of antileishmanial activity from marine sponge extracts collected off the Tunisian coast. Parasitol Res 106:1281–1286PubMedCrossRefPubMedCentralGoogle Scholar
  20. Bertoldo C, Antranikian G (2002) Starch hydrolyzing enzymes from thermophilic archea and bacteria. Curr Opin Chem Biol 6:151–160PubMedCrossRefPubMedCentralGoogle Scholar
  21. Bharathi NP, Amudha P, Vanitha V (2016) Seagrasses—novel marine nutraceuticals. Int J Pharm Bio Sci 7(4):567–573CrossRefGoogle Scholar
  22. Bisset NG (1991) One man’s poison, another man’s medicine? J Ethnopharm 32:71–81CrossRefGoogle Scholar
  23. Bitam F, Ciavatta ML, Carbone M, Manzo E, Mollo E, Gavagnin M (2010) Chemical analysis of flavonoid constituents of the seagrass Halophila stipulacea: first finding of malonylated derivatives in marine phanerogams. Biochem Syst Ecol 38:686–690CrossRefGoogle Scholar
  24. Bixler HJ, Porse H (2010) A decade of change in the seaweed hydrocolloids industry. J Appl Phycol 23:321–335CrossRefGoogle Scholar
  25. Bjørkkjær T, Araujo P, Madland TM, Berstad A, Froyland L (2009) A randomized double blind comparison of short-term duodenally administrated whale and seal blubber oils in patients with inflammatory bowel disease and joint pain. Prostaglandins, Leukot Essent Fat Acids 81:425–432CrossRefGoogle Scholar
  26. Blunt JW, Copp BR, Munro MHG, Northcote PT, Prinsep MR (2004) Marine natural products. Nat Prod Rep 21:1–49PubMedCrossRefPubMedCentralGoogle Scholar
  27. Bol KF, Aarntzen EH, Pots JM, Olde Nordkamp MA, van de Rakt MW, Scharenborg NM et al (2016) Prophylactic vaccines are potent activators of monocyte-derived dendritic cells and drive effective anti-tumor responses in melanoma patients at the cost of toxicity. Cancer Immunol Immunother 65(3):327–339PubMedPubMedCentralCrossRefGoogle Scholar
  28. Bottino NR (1971) The composition of marine-oil triglycerides as determined by silver ion-thin-layer chromatography. J Lipid Res 12:24–30PubMedPubMedCentralGoogle Scholar
  29. Bringmann G, Gulder TA, Lang G, Schmitt S, Stöhr R, Wiese J et al (2007) Large-scale biotechnological production of the antileukemic marine natural product sorbicillactone A. Mar Drugs 5:23–30PubMedPubMedCentralCrossRefGoogle Scholar
  30. Brotherton J (2015) HPV prophylactic vaccines: lessons learned from 10 years experience. Future Med 10(8):999–1009Google Scholar
  31. Brown Mark A, Daya Mohamud R, Worley Joseph A (2009) Experience with Chitosan dressings in a civilian EMS system. The J Emerg Med 37(1):1–7PubMedCrossRefPubMedCentralGoogle Scholar
  32. Brunborg LA, Julshamn K, Nortvedt R, Frøyland L (2006) Nutritional composition of blubber and meat of hooded seal (Cystophora cristata) and harp seal (Phagopilus groenlandicus) from Greenland. Food Chem 96:524–531CrossRefGoogle Scholar
  33. Brunborg LA, Madland TM, Lind RA, Arslan G, Berstad A, Frøyland L (2008) Effects of short-term oral administration of dietary marine oils in patients with inflammatory bowel disease and joint pain: a pilot study comparing seal oil and cod liver oil. Clin Nutr 27:614–622PubMedCrossRefPubMedCentralGoogle Scholar
  34. Buonanno F, Quassinti L, Bramucci M, Amantini C, Lucciarini R, Santoni G et al (2008) The protozoan toxin climacostol inhibits growth and induces apoptosis of human tumor cell lines. Chem Biol Interact 176:151–164PubMedCrossRefPubMedCentralGoogle Scholar
  35. Burja AM, Banaigs EB, Mansour A, Burgess JG, Wright PC (2001) Marine cyanobacteria-a prolific source of natural products. Tetrahedron 57:9347–9377CrossRefGoogle Scholar
  36. Cafieri F, Fattorusso E, Magno S, Santacroce C, Sica D (1973) Isolation and structure of axisonitrile 1 and axisothiocyanate 1, two unusual sesquiterpenoids from the marine sponge Axinella cannabina. Tetrahedron 29:4259–4262CrossRefGoogle Scholar
  37. Cafieri F, Fattorusso E, Taglialatela-Scafati O, Ianaro A (1999) Metabolites from the sponge Plakortis simplex. Determination of absolute stereochemistry of plakortin. Isolation and stereostructure of three plakortin related compounds. Tetrahedron 55:7045–7056CrossRefGoogle Scholar
  38. Calvayrac R, Laval-Martin D, Briand J, Farineau J (1981) Paramylon synthesis by Euglena gracilis photoheterotrophically grown under low O2 pressure. Planta 153(1):6–13PubMedCrossRefPubMedCentralGoogle Scholar
  39. Campagnuolo C, Fattorusso E, Romano A, Taglialatela-Scafati O, Basilico N, Parapini S, Taramelli D (2005) Antimalarial polyketide cycloperoxides from the marine sponge Plakortis simplex. Eur J Org Chem 23:5077–5083CrossRefGoogle Scholar
  40. Cardellina JH 2nd, Marner FJ and Moore RE (1979) Seaweed dermatitis: structure of lyngbyatoxin A. Science 13; 204(4389):193–195PubMedCrossRefPubMedCentralGoogle Scholar
  41. Cardillina JHII, Marner FJ, Moore RE (1979) Seaweed dermatitis: structure of lyngbyatoxin A. Science 204:193–195CrossRefGoogle Scholar
  42. Carte BK (1996) Biomedical potential of marine natural products. Bioscience 46:271–286CrossRefGoogle Scholar
  43. Casal C, Cuaresma M, Vega JM, Vilchez C (2011) Enhanced productivity of a lutein-enriched novel acidophile microalga grown on urea. Mar Drugs 9:29–42CrossRefGoogle Scholar
  44. Cha TS, Chen CF, Yee W, Aziz A, Loh SH (2011) Cinnamic acid, coumarin and vanillin: alternative phenolic compounds for efficient agrobacterium-mediated transformation of the unicellular green alga, Nannochloropsis sp. J Microbiol Methods 84:430–434PubMedCrossRefPubMedCentralGoogle Scholar
  45. Chakrabarty MM (2009) Chemistry and technology of oils and fats, p 183Google Scholar
  46. Chakraborty C, Hsu CH, Wen ZH, Lin CS (2009) Anticancer drugs discovery and development from marine organism. Curr Top Med Chem 9(16):1536–1545PubMedCrossRefPubMedCentralGoogle Scholar
  47. Challouf R, Trabelsi L, Dhieb RB, El Abed O, Yahia A, Ghozzi K et al (2011) Evaluation of cytotoxicity and biological activities in extracellular polysaccharides released by cyanobacterium Arthrospira platensis. Braz Arch Biol Technol 54:831–838CrossRefGoogle Scholar
  48. Chang Y, Brewer NT, Rinas AC, Schmitt K, Smith JS (2009) Evaluating the impact of human papillomavirus vaccines. Vaccine 27(32):4355–4362PubMedCrossRefPubMedCentralGoogle Scholar
  49. Chen J (2003) Overview of sea cucumber farming and sea ranching practices in China. SPC Beche-de-mer Inf Bull 18:18–23Google Scholar
  50. Chin YX, Lim PE, Maggs CA, Phang SM, Sharifuddin Y, Green BD (2014) Anti-diabetic potential of selected Malaysian seaweeds. J Appl Phycol.  https://doi.org/10.1007/s10811-014-0462-8CrossRefGoogle Scholar
  51. Chopin T, Sharp G, Belyea E, Semple R, Jones D (1999) Open-water aquaculture of the red alga Chondrus crispus in Prince Edward Island, Canada. Hydrobiologia 398/399:417–425Google Scholar
  52. Christaki E, Bonos E, Florou-Paneri P (2015) Innovative microalgae pigments as functional ingredients in nutrition. In: Kim SK (ed) Handbook of marine microalgae: biotechnology advances. Elsevier Academic Press, London, UK, pp 233–243CrossRefGoogle Scholar
  53. Christaki E, Florou-Paneri P, Bonos E (2011) Microalgae: a novel ingredient in nutrition. Int J Food Sci Nutr 62:794–799PubMedCrossRefPubMedCentralGoogle Scholar
  54. Chu WL (2012) Biotechnological applications of microalgae. Int e-J Sci Med Educ 6:S24–S37Google Scholar
  55. Cohen P, Holmes C, Tsukitani Y (1990) Okadaic acid: a new probe for the study of cellular regulation. Trends Biochem Sci 15:98–102PubMedCrossRefPubMedCentralGoogle Scholar
  56. Colwell RR (1997) Microbial biodiversity and biotechnology. In: Reaka-kudla ML et al (eds) Biodiversity II: understanding and protecting our biological resources. Joseph Henry Press, Washington, DC, pp 77–78Google Scholar
  57. Conquer JA, Cheryk LA, Chan E, Gentry PA, Holub BJ (1999) Effect of supplementation with dietary seal oil on selected cardiovascular risk factor and hemostatic variables in healthy male subjects. Thrombosis Res 96:239–250CrossRefGoogle Scholar
  58. Cordero BF, Obraztsova I, Couso I, Leon R, Vargas MA, Rodríguez H (2011) Enhancement of lutein production in Chlorella sorokiniana (chlorophyta) by improvement of culture conditions and random mutagenesis. Mar Drugs 9:1607–1624PubMedPubMedCentralCrossRefGoogle Scholar
  59. Covington MB (2004) Omega-3 fatty acids. Am Fam Phys 70(1):133–140Google Scholar
  60. Gerwick WH, Proteau PJ, Nagh DG, Hamel E, Blobhin A, Slate DL (1994) Structure of cruacin A, a novel antimitotic, antiproliferative and brine shrimp toxic natural product from the marine cyanobacterium Lyngbya majusula. J Org Chem 59:1243–1245 CrossRefGoogle Scholar
  61. Crupi P, Toci AT, Mangini S, Wrubl F, Rodolfi L, Tredici MR et al (2013) Determination of fucoxanthin isomers in microalgae (Isochrysis sp.) by high-performance liquid chromatography coupled with diode-array detector multistage mass spectrometry coupled withpositive electrospray ionization. Rapid Commun Mass Spectrom 27:1027–1035PubMedCrossRefPubMedCentralGoogle Scholar
  62. Cyhlarova E, Bell JG, Dick JR, MacKinlay EE, Stein JF, Richardson AJ (2007) Membrane fatty acids, reading and spelling in dyslexic and nondyslexic adults. Eur Neuropsychopharmacology 17:116–121CrossRefGoogle Scholar
  63. Dahl TM, Lydersen C, Kovacs KM, Falk-Petersen S, Sargent J, Gjertz I et al (2000) Fatty acid composition of the blubber in white whales (Delphinapterus leucas). Polar Biol 23:401–409CrossRefGoogle Scholar
  64. Dalli J, Chiang N, Serhan CN (2015) Elucidation of novel 13-series resolvins that increase with atorvastatin and clear infections. Nat Med 21(9):1071–1075PubMedPubMedCentralCrossRefGoogle Scholar
  65. Damotharan P, Veeruraj A, Arumugam M, Balasubramanian T (2015) In vitro antibacterial activity of venom protein isolated from sea snake Enhydrina schistosa against drugresistant human pathogenic bacterial strains. J Coast Life Med 3(6):453–458Google Scholar
  66. Danilchenko SN, Kalinkevich OV, Pogorelov MV (2009) Chitosan–hydroxyapatite composite biomaterials made by a one step co-precipitation method: preparation, characterization and in vivo tests. J Biol Phys Chem 9(3):119–126CrossRefGoogle Scholar
  67. Dapson RW, Frank M, Penney DP, Kiernan JA (2007) Revised procedures for the certification of carmine (C.I. 75470, Natural red 4) as a biological stain. Biotech Histochem 82(1):13–15PubMedCrossRefPubMedCentralGoogle Scholar
  68. Davidi L, Shimoni E, Khozin-Goldberg I, Zamir A, Pick U (2014) Origin of β-carotene-rich plastoglobuli in Dunaliella bardawil. Plant Physiol 164:2139–2156PubMedPubMedCentralCrossRefGoogle Scholar
  69. Dawes CJ (1998) Marine botany, 2nd edn. Wiley, New York, pp 1–7Google Scholar
  70. de Jesus Raposo MF, de Morais AMB, de Morais RMSC (2015) Review: marine polysaccharides from algae with potential biomedical applications. Mar Drugs 13(5):2967–3028PubMedPubMedCentralCrossRefGoogle Scholar
  71. de Jesus Raposo MF, de Morais RMSC, de Morais AMMB (2013) Review: bioactivity and applications of sulphated polysaccharides from marine microalgae. Mar Drugs 11:233–252PubMedCentralCrossRefGoogle Scholar
  72. DeFilippis AP, Sperling LS (2005) Understanding omega-3’s. Am Heart J 151:564–570CrossRefGoogle Scholar
  73. Dellai A, Laroche-Clary A, Mhadhebi L, Robert J, Bouraoui A (2010) Anti-inflammatory and antiproliferative activities of crude extract and its fractions of the defensive secretion from the mediterranean sponge. Spongia officinalis. Drug Dev Res 71:412–418CrossRefGoogle Scholar
  74. Desbois AP, Mearns-Spragg A, Smith VJ (2009) A fatty acid from the diatom Phaeodactylum tricornutum is antibacterial against diverse bacteria including multi-resistant Staphylococcus aureus (MRSA). Mar Biotechnol (NY) 11:45–52CrossRefGoogle Scholar
  75. Desoubzdanne D, Marcourt L, Raux R, Chevalley S, Dorin D, Doerig C et al (2008) Alisiaquinones and alisiaquinol, dual inhibitors of Plasmodium falciparum enzyme targets from a New Caledonian deep water sponge. J Nat Prod 71:1189–1192PubMedCrossRefPubMedCentralGoogle Scholar
  76. Deville C, Damas J, Forget P, Dandrifosse G, Peulen O (2004) Laminarin in the dietary fiber concept. J Sci Food Agric 84:1030–1038CrossRefGoogle Scholar
  77. Deville C, Gharbi M, Dandrifosse G, Peulen O (2007) Study on the effects of laminarin, a polysaccharide from seaweed, on gut characteristics. J Sci Food Agric 87:1717–1725CrossRefGoogle Scholar
  78. Di Blasio B, Fattorusso E, Magno S, Mayol L, Pedone C, Santacroce C et al (1976) Axisonitrile-3, axisothiocyanate-3 and axamide-3. Sesquiterpenes with a novel spiro [4,5] decane skeleton from the sponge Axinella cannabina. Tetrahedron 32:473–478CrossRefGoogle Scholar
  79. Dillon EC, Wilton JH, Barlow JC, Watson WA (1989) Large surface area activated charcoal and the inhibition of aspirin absorption. Ann Emerg Med 18(5):547–552PubMedCrossRefPubMedCentralGoogle Scholar
  80. Donia M, Hamann MT (2003) Marine natural products and their potential applications as antiinfective agents. The Lancet 3:338–348PubMedCrossRefPubMedCentralGoogle Scholar
  81. Ducheyne P, Healy K, Hutmacher DE, Grainger DW, James Kirkpatrick C (eds) (2011) Comprehensive biomaterials. Elsevier, Amsterdam, p 229Google Scholar
  82. Edrada RA, Proksch P, Wray V, Witte L, Müller WE, Van Soest RW (1996) Four new bioactive manzamine-type alkaloids from the Philippine marine sponge Xestospongia ashmorica. J Nat Prod 59(11):1056–1060PubMedCrossRefPubMedCentralGoogle Scholar
  83. Edwards IJ, O’Flaherty JT (2008) Omega-3 fatty acids and PPARgamma in cancer. PPAR Res 2008:358052.  https://doi.org/10.1155/2008/358052CrossRefPubMedPubMedCentralGoogle Scholar
  84. El Sayed KA, Kelly M, Kara UAK, Ang KKH, Katsuyama I, Dunbar DC et al (2001) New manzamine alkaloids with potent activity against infectious diseases. J Am Chem Soc 123:1804–1808PubMedCrossRefPubMedCentralGoogle Scholar
  85. El Sayed KA, Yousaf M, Hamann MT, Avery MA, Kelly M, Wipf P (2002) Microbial and chemical transformation studies of the bioactive marine sesquiterpenes (S)-(+)-Curcuphenol and -Curcudiol isolated from a deep reef collection of the Jamaican sponge Didiscus oxeata. J Nat Prod 65:1547–1553PubMedCrossRefPubMedCentralGoogle Scholar
  86. Elayaraja S, Murugesan P, Vijayalakshmi S, Balasubramanian T (2010) Antibacterial and antifungal activities of polychaete Perinereis cultrifera. Indian J Mar Sci 39(2):257–261Google Scholar
  87. El-Din SMM (2016) Bioactivity and phytochemical constituents of marine red seaweeds (Jania rubens, Corallina mediterranea and Pterocladia capillacea). J Taibah Univ Sci 10(4):471–484CrossRefGoogle Scholar
  88. Emsley J (2011) Nature’s building blocks: an A-Z guide to the elements, 2nd edn. Oxford University Press, Oxford, p 178Google Scholar
  89. Eom SH, Lee SH, Yoon NY, Jung WK, Jeon YJ, Kim SK et al (2012) α-Glucosidase and α-amylase-inhibitory activities of phlorotannins from Eisenia bicyclis. J Sci Food Agric 92:2084–2090PubMedCrossRefPubMedCentralGoogle Scholar
  90. Falk-Petersen S, Sargent JR, Henderson J, Hegseth EN, Hop H, Okolodkov YB (1998) Lipids and fatty acids in ice algae and phytoplankton from the marginal ice zone in the Barents Sea. Polar Biol 20(1):41–47CrossRefGoogle Scholar
  91. Fattorusso E, Taglialatela-Scafati O (2009) Marine antimalarials. Mar Drugs 7(2):130–152PubMedPubMedCentralCrossRefGoogle Scholar
  92. Fattorusso E, Magno S, Mayol L, Santacroce C, Sica D (1974) Isolation and structure of axisonitrile 2. New sesquiterpenoid isonitrile from the sponge Axinella cannabina. Tetrahedron 30:3911–3913CrossRefGoogle Scholar
  93. Fattorusso E, Magno S, Mayol L, Santacroce C, Sica D (1975) New sesquiterpenoids from the sponge Axinella cannabina. Tetrahedron 31:269–270CrossRefGoogle Scholar
  94. FDA (2016) Vaxchora (Cholera vaccine, Live, Oral). U.S. Food and Drug Administration. (http://www.immunize.org/fda/)
  95. Fenical W (1993) Chemical studies of marine bacteria: developing a new resource. Chem Rev 93(5):1673–1683CrossRefGoogle Scholar
  96. Fenical W, Jensen PR (1993) Marine micro-organisms. A new biomedical resource. In: Attaway D, Zaborsky O (eds) Marine biotechnology, vol 1. Plenum Press, New York, pp 419–457Google Scholar
  97. Feskens EJ (2001) Can diabetes be prevented by vegetable fat? Diabetes Care 24:1517–1518PubMedCrossRefPubMedCentralGoogle Scholar
  98. Fiore AE, Bridges CB, Cox NJ (2009) Seasonal influenza vaccines. Curr Top Microbiol Immunol 333:43–82PubMedPubMedCentralGoogle Scholar
  99. Fiorini D, Giuli S, Marcantoni E, Quassinti L, Bramucci M, Amantini C et al (2010) A straight forward diastereoselective synthesis and evaluation of climacostol, a natural product with anticancer activities. Synthesis (tuttg) 9:1550–1556Google Scholar
  100. Fleury N, Lahaye M (1991) Chemical and physicochemical characterization of fibers from Laminaria digitata (Kombu Breton): a physiological approach. J Sci Food Agric 35:389–400CrossRefGoogle Scholar
  101. Frazier I (2014) Development and implementation of papillomavirus prophylactic vaccines. J Immunol 192(9):4007–4011CrossRefGoogle Scholar
  102. Freeman MP, Hibbeln JR, Wisner KL, Davis JM, Mischoulon D, Peet M et al (2006) Omega-3 fatty acids: evidence basis for treatment and future research in psychiatry. J Clin Psychiatry 67:1954–1967PubMedCrossRefPubMedCentralGoogle Scholar
  103. Freund-Levi Y, Eriksdotter-Jonhagen M, Cederhol T, Basun H, Faxen- Irving G, Garlind A (2006) Omega-3 fatty acid treatment in 174 patients with mild to moderate Alzheimer diseas: OmegAD study: a randomized double-blind trial. Arch Neurol 6310:1402–1408CrossRefGoogle Scholar
  104. Fu W, Gudmundsson O, Paglia G, Herjolfsson G, Andrésson OS, Palsson BØ et al (2013) Enhancement of carotenoid biosynthesis in the green microalga Dunaliella salina with light-emitting diodes and adaptive laboratory evolution. Appl Microbiol Biotechnol 97:2395–2403PubMedCrossRefPubMedCentralGoogle Scholar
  105. Fuesetani N (2000) Drugs from the sea. In: Fuesetani M (ed), Karger Publishers: Basel, Switzerland, Volume Chapter 1, pp 1–5Google Scholar
  106. Fujiki H, Sugimura T (1987) New classes of tumor promoters: telocin, aplysiatoxin and palytoxin. Adv Cancer Res 59:223–264CrossRefGoogle Scholar
  107. Goclik E, Konig GM, Wright AD, Kaminsky R (2000) Pelorol from the tropical marine sponge Dactylospongia elegans. J Nat Prod 63:1150–1154PubMedCrossRefPubMedCentralGoogle Scholar
  108. Greenhawt M, McMorris M, Baldwin J (2009) Carmine hypersensitivity masquerading as azithromycin hypersensitivity. Allergy Asthma Proc 30(1):95–101PubMedCrossRefPubMedCentralGoogle Scholar
  109. Greig JB (2012) WHO food additives series 46: cochineal extract, carmine, and carminic acid. Food Standards AgencyGoogle Scholar
  110. Grohar PJ, Griffin LB, Yeung C, Chen Q-R, Pommier Y, Khanna C et al (2011) Ecteinascidin 743 interferes with the activity of EWS-FLI1 in Ewing Sarcoma cells. Neoplasia 13(2):145–153PubMedPubMedCentralCrossRefGoogle Scholar
  111. Groweiss A, Fenical W, Cun-Heng H, Clardy J, Zhongde W, Zhongnian Y et al (1985) Subergorgic acid, a novel tricyclopentanoid cardiotoxin from the Pacific gorgonian coral Subergorgia suberosa. Tetrahedron Lett 26:2379–2386CrossRefGoogle Scholar
  112. Guedes AC, Amaro HM, Malcata FX (2011) Microalgae as sources of carotenoids. Mar Drugs 9(4):625–644PubMedPubMedCentralCrossRefGoogle Scholar
  113. Gustafson K, Roman M, Fenical W (1989) The microlactins, a novel class of antiviral and cytotoxic macrolides from deep-sea marine bacterium. J Am Chem Soc 111:7519–7524CrossRefGoogle Scholar
  114. Guzmán S, Gato A, Lamela M, Freire-Garabal M, Calleja JM (2003) Anti-inflammatory and immunomodulatory activities of polysaccharide from Chlorella stigmatophora and Phaeodactylum tricornutum. Phytother Res 17:665–670PubMedCrossRefPubMedCentralGoogle Scholar
  115. Haefner B (2003) Drugs from the deep. Drug Discov Today 8:536–544Google Scholar
  116. Hanmann MT, Scheuer PJ, Kahalide F (1993) A Bioactive Depsipeptide from the Sacoglossan Mollusk Elisia refescens and the Green Alga Byopsis sp. J American Chem Soc 115:5825–5826Google Scholar
  117. Hamada M, Nagai T (1995) Inorganic components of bones of fish and their advanced utilization. J Shimonoseki Univ Fish 43:185–194Google Scholar
  118. Hardoim CC, Costa R (2014) Microbial communities and bioactive compounds in marine sponges of the family irciniidae—a review. Mar Drugs 12(10):5089–5122PubMedPubMedCentralCrossRefGoogle Scholar
  119. Hatae N, Satoh R, Chiba H, Osaki T, Nishiyama T, Ishikura M et al (2014) N-substituted calothrixin B derivatives inhibited the proliferation of HL-60 promyelocytic leukemia cells. Med Chem Res 23:4956–4961CrossRefGoogle Scholar
  120. Heglmeier A, Zidorn C (2010) Secondary metabolites of Posidonia oceanica (Posidoniaceae). Biochem Syst Ecol 38:964–970CrossRefGoogle Scholar
  121. Hidiroglou N, Peace RW, Jee P, Leggee D, Kuhnlein H (2008) Levels of folate, pyridoxine, niacin and riboflavin in traditional foods of Canadian Arctic Indigenous peoples. J Food Compos Anal 21:474–480CrossRefGoogle Scholar
  122. Higgs MD, Faulkner DJ (1978) Plakortin, an antibiotic from Plakortis halichondrioides. J Org Chem 43:3454–3457CrossRefGoogle Scholar
  123. Holst PB, Anthoni U, Christophersen C, Neilson PN (1994) Marine alkaloids, two alkaloids, flustramine E and debromoflustramine B, from the marine bryozoan Flustra foliacea. J Nat Prod 57:997–1000PubMedCrossRefPubMedCentralGoogle Scholar
  124. Hossain Z, Kurihara H, Hosokawa M, Takahashi K (2005) Growth inhibition and induction of differentiation and apoptosis mediated by sodium butyrate in Caco-2 cells with algal glycolipids. Vitro Cell Dev Biol Anim 41(5–6):154–159CrossRefGoogle Scholar
  125. Hu FB, van Dam RM, Liu S (2001) Diet and risk of type II diabetes: the role of types of fat and carbohydrate. Diabetologia 44:805–817PubMedCrossRefPubMedCentralGoogle Scholar
  126. Hurley JC, Tosolini FA, Louis WJ (1991) Quantitative limulus lysate assay for endotoxin and the effects of plasma. J Clinc Pathol 44(10):849–854PubMedPubMedCentralCrossRefGoogle Scholar
  127. Iatrides MC, Artaud J, Vicente N (1983) Sterol composition of Mediterranean marine plants. Oceanol Acta 6:73–77Google Scholar
  128. Ireland CM, Copp BR, Foster MP, McDonald LA, Radisky DC, Swersey JC (1993) Biomedical. In: Attaway DH, Zaborsky OR (eds) Marine biotechnology. Vol. 1: Pharmaceutical and Bioactive Natural Products. New York, NY: Plenum Press, pp 1–43Google Scholar
  129. Ito E, Satake M, Yasumoto T (2002) Pathological effects of lyngbyatoxin A upon mice. Toxicon 40(5):551–556PubMedCrossRefPubMedCentralGoogle Scholar
  130. Iwata K, Inayama T, Kato T (1990) Effects of Spirulina platensis on plasma lipoprotein lipase activity in fructose-induced hyperlipidemic rats. J Nutr Sci Vitaminol (Tokyo) 36:165–171CrossRefGoogle Scholar
  131. Jensen PR, Jenkins KM, Porter D, Fenical W (1998) Evidence that a new antibiotic flavones glycoside chemically defends the seagrass Thalassia testudinum against zoosporic fungi. Appl Environ Microbiol 64(4):1490–1496PubMedPubMedCentralGoogle Scholar
  132. Jeong SJ, Higuchi R, Miyamoto T, Ono M, Kuwano M, Mawatari SF (2002) Bryoanthrathiophene, a new antiangiogenic constituent from the bryozoan Watersipora subtorquata (d’Orbigny, 1852). J Nat Prod 65(9):1344–1345PubMedCrossRefPubMedCentralGoogle Scholar
  133. Jha RK, Zi-rong X (2004) Review biomedical compounds from marine organisms. Marine Drugs 2(3):123–146PubMedCentralCrossRefGoogle Scholar
  134. Jiménez-Escrig A, Sánchez-Muniz FJ (2000) Dietary fibre from edible seaweeds: chemical structure, physicochemical properties and effects on cholesterol metabolism. Nutr Res 20(4):585–598CrossRefGoogle Scholar
  135. Jo WS, Cho YJ, Kim HJ, Nam BY, Hong SH, Lee GA et al (2010) Anti-inflammatory effect of microalgal extracts from Tetraselmis suecica. Food Sci Biotechnol 19:1519–1528CrossRefGoogle Scholar
  136. Kadam SU, Prabhasankar P (2010) Marine foods as functional ingredients in bakery and pasta products. Food Res Int 43:1975–1980CrossRefGoogle Scholar
  137. Kalechman Y, Albeck M, Sredni B (1992) In vivo synergistic effect of the immunomodulator As 101 and the PKC inducer bryostatin. Cell Immunol 143(1):143–153PubMedCrossRefPubMedCentralGoogle Scholar
  138. Kim SK, Tan LT (2013) Marine cyanobacteria: a prolific source of bioactive natural products as drug leads. In: Marine microbiology: bioactive compounds and biotechnological applications. Pukyong National University, Marine Bioprocess Research Center Daeyeon-Dong, Nam-Gu 599-1, Busan 608-737, Republic of Korea; Published Online: 8 Jul 2013 DOI: https://doi.org/10.1002/9783527665259.ch05CrossRefGoogle Scholar
  139. Kashihara N, Toe S, Nakamura K, Umezawa K, Yamamura S, Nishiyama S (2000) Synthesis and biological activities of hapalosin derivatives with modification at C12 position. Bioorg Med Chem Lett 10:101–103Google Scholar
  140. Kim Y, Seo JH, Kim H (2011) Beta-carotene and lutein inhibit hydrogen peroxide-induced activation of NF-kappaB and IL-8 expression in gastric epithelial AGS cells. J Nutr Sci 57:216–223Google Scholar
  141. Klayman DL (1985) Qinghaosu (artemisinin): an antimalarial drug from China. Science 228:1049–1055PubMedCrossRefPubMedCentralGoogle Scholar
  142. Klayman DL, Lin AJ, Acton N, Scovill JP, Hoch JM, Milhous WK, Theoharides AD, Dobek AS (1984) Isolation of artemisinin (qinghaosu) from Artemisia annua growing in the United States. J Nat Prod 47:715–717PubMedPubMedCentralCrossRefGoogle Scholar
  143. Kodama M, Ogata T, Sato S (1988) Bacterial production of saxitoxin. Agric Biol Chem 52:1075–1077Google Scholar
  144. Kodama M, Ogata T, Sato T, Sakamoto S (1990) Possible association of marine bacteria with paralytic shellfish toxicity of bivalves. Mar Ecol Prog Ser 61:203–206CrossRefGoogle Scholar
  145. Koehn FE, Longley R, Reed JK (1992) Microcolin A and B, new immunosuppressive peptides from the blue green alga Lyngbya majuscula. J Nat Prod 55(5):613–619PubMedCrossRefPubMedCentralGoogle Scholar
  146. Kollár P, Rajchard J, Balounová Z, Pazourek J (2014) Marine natural products: bryostatins in preclinical and clinical studies. Pharm Biol 52(2):237–242PubMedCrossRefPubMedCentralGoogle Scholar
  147. Komori T, Sanechika Y, Ito Y, Matsuo J, Nohara T, Kawasaki T et al (1980) Biologically active glycosides from asteroidea, structures of a new cerebroside mixture and of two nucleosides from the starfi sh Acanthaster planci. Liebigs Ann Chem 653–668Google Scholar
  148. Kontiza I, Stavri M, Zloh M, Vagias C, Gibbons S, Roussis V (2008) New metabolites with antibacterial activity from the marine angiosperm Cymodocea nodosa. Tetrahedron 64(8):1696–1702CrossRefGoogle Scholar
  149. Kuhnlein HV, Barthet Farren A, Falahi E, Leggee D, Receveur O, Berti P (2006) Vitamins A, D, and E in Canadian Arctic traditional food and adult diets. J Food Compos Anal 19:495–506CrossRefGoogle Scholar
  150. Kumari P, Kumar M, Gupta V, Reddy CRK, Jha B (2010) Tropical marine macroalgae as potential sources of nutritionally important PUFAs. Food Chem 120:749–757CrossRefGoogle Scholar
  151. Kurihara H, Mitani T, Kawabata J, Takahashi K (1999) Inhibitory potencies of bromophenols from Rhodomelaceae algae against α-glucosidase activity. Fish Sci 65:300–303CrossRefGoogle Scholar
  152. Kwan JC, Teplitski M, Gunasekera SP, Paul VJ, Luesch H (2010) Isolation and biological evaluation of 8-epi-malyngamide C from the Floridian marine cyanobacterium Lyngbya majuscula. J Nat Prod 73:463–466PubMedPubMedCentralCrossRefGoogle Scholar
  153. Lagarde D, Beuf L, Vermaas W (2000) Increased production of zeaxanthin and other pigments by application of genetic engineering techniques to Synechocystis sp. strain PCC 6803. Appl Environ Microbiol 66(1):64–72PubMedPubMedCentralCrossRefGoogle Scholar
  154. Lahaye M (1991) Marine-algae as sources of fibers—determination of soluble and insoluble dietary fiber contents in some sea vegetables. J Sci Food Agric 54(4):587–594CrossRefGoogle Scholar
  155. Laurent D, Jullian V, Parenty A, Knibiehler M, Dorin D, Schmitt S et al (2006) Antimalarial potential of xestoquinone, a protein kinase inhibitor isolated from a Vanuatu marine sponge Xestospongia sp. Bioorg Med Chem 14:4477–4482PubMedCrossRefPubMedCentralGoogle Scholar
  156. Lee I, Han JI (2015) Hydrothermal-acid treatment for effectual extraction of eicosapentaenoic acid (EPA)-abundant lipids from Nannochloropsis salina. Bioresour Technol 191:1–6PubMedCrossRefPubMedCentralGoogle Scholar
  157. Li B, Lu F, Wei XJ, Zhao RX (2008) Fucoidan: structure and bioactivity. Molecules 13:1671–1695PubMedCrossRefPubMedCentralGoogle Scholar
  158. Liesegang TJ (2009) Varicella zoster virus vaccines: effective, but concerns linger. Can J Ophthalmol 44(4):379–384PubMedCrossRefPubMedCentralGoogle Scholar
  159. Lilies G (1996) Gambling on marine biotechnology. Bioscience 46:250–253CrossRefGoogle Scholar
  160. Linhardt RJ, Loganathan D, Al-Hakim A, Wang HM, Walenga JM, Hoppensteadt D et al (1990) Oligosaccharide mapping of low molecular weight heparins: structure and activity differences. J Med Chem 33:1639–1645PubMedCrossRefPubMedCentralGoogle Scholar
  161. Liu J, Sun Z, Gerken H, Liu Z, Jiang Y, Chen F (2014) Chlorella zofingiensis as an alternative microalgal producer of astaxanthin: biology and industrial potential. Mar Drugs 12:3487–3515PubMedPubMedCentralCrossRefGoogle Scholar
  162. López-Saiz CM, Suárez-Jiménez GM, Plascencia-Jatomea M, Burgos-Hernández A (2013) Shrimp Lipids: a source of cancer chemopreventive compounds. Mar Drugs 11(10):3926–3950PubMedPubMedCentralCrossRefGoogle Scholar
  163. Lucas M, Proust F, Blanchet C, Ferland A, Déry S, Abdous B et al (2010) Is marine mammal fat or fish intake most strongly associated with omgea-3 blood levels among the Nunavik Inuit? Prostaglandins, Leukot Essent Fat Acids 83:143–150CrossRefGoogle Scholar
  164. Luesch H, Harrigan GG, Goetz G, Horgen FD (2002) The cyanobacterial origin of potent anticancer agents originally isolated from sea hares. Curr Med Chem 9:1791–1806PubMedCrossRefPubMedCentralGoogle Scholar
  165. Lysek N, Rachor E, Lindel T (2002) Isolation and structure elucidation of deformylflustrabromine from the North Sea bryozoan Flustra foliacea. Z Naturforsch, C: J Biosci 57(11–12):1056–1061CrossRefGoogle Scholar
  166. MacArtain P, Gill CIR, Brooks M, Campbell R, Rowland IR (2007) Nutritional value of edibleseaweeds. Nutr Rev 65:535–543PubMedCrossRefPubMedCentralGoogle Scholar
  167. Maeda N, Kokai Y, Hada T, Yoshida H, Mizushina Y (2013) Oral administration of monogalactosyl diacylglycerol from spinach inhibits colon tumor growth in mice. Exp Ther Med 5:17–22PubMedCrossRefPubMedCentralGoogle Scholar
  168. Maeda N, Kokai Y, Ohtani S, Hada T, Yoshida H, Mizushina Y (2009) Inhibitory effects of preventive and curative orally administered spinach glycoglycerolipid fraction on the tumor growth of sarcoma and colon in mouse graft models. Food Chem 112:205–210CrossRefGoogle Scholar
  169. Maeda N, Kokai Y, Ohtani S, Sahara H, Kumamoto-Yonezawa Y et al (2008) Anti-tumor effect of orally administered spinach glycolipid fraction on implanted cancer cells, colon-26, in mice. Lipids 43:741–748PubMedCrossRefPubMedCentralGoogle Scholar
  170. Manirafasha E, Ndikubwimana T, Zeng X, Lu Y (2016) Phycobiliproteins: potential microalgae derived pharmaceutical and biological reagent. Biochem Eng J 109:282–296CrossRefGoogle Scholar
  171. Markou G, Iconomou D, Sotiroudis T, Israilides C, Muylaert K (2015) Exploration of using stripped ammonia and ash from poultry litter for the cultivation of the cyanobacterium Arthrospira platensis and the green microalga Chlorella vulgaris. Bioresour Technol 196:459–468PubMedCrossRefPubMedCentralGoogle Scholar
  172. Marshall JA, Bessesen DH (2002) Dietary fat and the development of type 2 diabetes. Diabetes Care 25:620–622PubMedCrossRefPubMedCentralGoogle Scholar
  173. Matsui SM, Muizzudin N, Arad SM, Marenus K (2003) Sulfated polysaccharides from red microalgae anti-inflammatory properties in vitro and in vivo. Appl Biochem Biotechnol 104:13–22PubMedCrossRefPubMedCentralGoogle Scholar
  174. Mayer AM, Glaser KB, Cuevas C, Jacobs RS, Kem W, Little RD et al (2010) The odyssey of marine pharmaceuticals: a current pipeline perspective. Trends Pharmacol Sci 31:255–265PubMedCrossRefPubMedCentralGoogle Scholar
  175. McConnell OJ, Longley RE, Koehn EE (1994) The discovery of marine natural products with therapeutic potential. In: Gullo VP (ed) The discovery natural products with therapeutic potential. Butterworth-Heinemann, Boston, pp 109–174Google Scholar
  176. McMillan C (1986) Sufated flavonoids and leaf morphology in the Halophila ovalis-H. minor complex (Hydrocharitaceae) of the Indo-Pacific ocean. Aquat Bot 25:63–72CrossRefGoogle Scholar
  177. McMillan C, Zapata O, Escobar L (1980) Sulfated phenolic compounds in seagrass. Aquat Bot 8:267–278CrossRefGoogle Scholar
  178. McPhail KL, Correa J, Linington RG, Gonzalez J, Ortega-Barria E, Capson TL et al (2007) Antimalarial linear lipopeptides from a panamanian strain of the marine cyanobacterium Lyngbya majuscula. J Nat Prod 70:984–988PubMedPubMedCentralCrossRefGoogle Scholar
  179. Melief C, van Hall T, Arens R, Ossendorp F, van der Burg S (2015) Therapeutic cancer vaccines. J Clin Invest 125(9):3401–3412PubMedPubMedCentralCrossRefGoogle Scholar
  180. Mendiola JA, García-Martínez D, Ruperez FJ, Martín-Álvarez PJ, Reglero G, Cifuentes A et al (2008) Enrichment of vitamin E from Spirulina platensis microalga by SFE. J Supercrit Fluid 43:484–489CrossRefGoogle Scholar
  181. Meng Y, Krzysiak AJ, Durako MJ, Kunzelman JI, Wright JLC (2008) Flavones and flavone gly-cosides from Halophila johnsonii. Phytochemistry 69:2603–2608PubMedCrossRefPubMedCentralGoogle Scholar
  182. Miyaoka H, Shimomura M, Kimura H, Yamada Y, Kim HS, Yusuke W (1998) Antimalarial activity of kalihinol A and new relative diterpenoids from the Okinawan sponge, Acanthella sp. Tetrahedron 54:13467–13474CrossRefGoogle Scholar
  183. Mizushina Y, Hada T, Yoshida H (2012) In vivo antitumor effect of liposomes with sialyl Lewis X including monogalactosyl diacylglycerol, a replicative DNA polymerase inhibitor, from spinach. Oncol Rep 28:821–828PubMedCrossRefPubMedCentralGoogle Scholar
  184. Mizushina Y, Kasai N, Iijima H, Sugawara F, Yoshida H, Sakaguchi K (2005) Sulfo-quinovosyl-acyl-glycerol (SQAG), a eukaryotic DNA polymerase inhibitor and anti-cancer agent. Curr Med Chem Anticancer Agents 5(6):613–625PubMedCrossRefPubMedCentralGoogle Scholar
  185. Mobraten K, Haug TM, Kleiveland CR, Lea T (2013) Omega-3 and omega-6 PUFAs induce the same GPR120-mediated signalling events, but with different kinetics and intensity in Caco-2 cells. Lipids Health Dis 12:101–107PubMedPubMedCentralCrossRefGoogle Scholar
  186. Monfils AK, Triemer RE, Bellairs EF (2011) Characterization of paramylon morphological diversity in photosynthetic euglenoids (Euglenales, Euglenophyta). Phycologia 50(2):156–169CrossRefGoogle Scholar
  187. Moore KS, Wehrli S, Roder H, Rogers M, Forrest JN, McCrimmon D et al (1993) Squalamine: an aminosterol antibiotic from the shark. Proc Natl Acad Sci USA 90:1354–1358PubMedPubMedCentralCrossRefGoogle Scholar
  188. Mynderse JK, Moore M, Kashiwagi M, Norton T (1997) Antileukemia activity in the Osillatoriaceae: isolation of debromoaplysiatoxin from lyngbya. Sci 196:538–540PubMedCrossRefPubMedCentralGoogle Scholar
  189. Murakami M, Makabe K, Yamaguchi K, Konosu S, Walchli MR (1988) Goniodomin A, a novel polyether macrolide from the dinoflagellate Goniodoma pseudogoniaulax. Tetrahedron Lett 29:1149–1152CrossRefGoogle Scholar
  190. Murata M, Nakazoe J (2001) Production and use of marine algae in Japan. Jarq Jpn Agr Res Q 35(4):281–290CrossRefGoogle Scholar
  191. Murti Y, Agarwal T (2010) Marine derived pharmaceuticals-development of natural health products from marine biodiversity. Int J ChemTech Res 2:2198–2217Google Scholar
  192. Nagai H, Murata M, Torigoe K, Satake M, Yasumoto T (1992) Gambieric acids, new potent. Antifungal substance with unprecedented polyether structures from a marine dinoflagellate Gambierdiscus toxicus. J Org Chem Commun 57:5448–5453CrossRefGoogle Scholar
  193. Nakamura H, Kobayashi J, Kobayashi M, Ohizumi Y, Hirata Y (1985) Physiologically active marine natural products from Porifera. VII. Xestoquinone. A novel cardiotonic marine natural product isolated from the Okinawan sea sponge Xestospongia sapra. Chem Lett 6:713–716CrossRefGoogle Scholar
  194. Narkowicz CK, Blackman AJ, Lacey E, Gill JH, Heiland K (2002) Convolutindole A and convolutamine H, new nematocidal brominated alkaloids from the marine bryozoan Amathia convoluta. J Nat Prod 65(6):938–941PubMedCrossRefPubMedCentralGoogle Scholar
  195. Nauroth JM, Liu YC, Van Elswyk M, Bell R, Hal EB, Chung G et al (2010) Docosahexaenoic acid (DHA) and docosapentaenoic acid (DPAn-6) algal oils reduce inflammatory mediators in human peripheral mononuclear cells in vitro and paw edema in vivo. Lipids 45:375–384PubMedCrossRefPubMedCentralGoogle Scholar
  196. Nomoto K, Yokokura T, Satoh H, Mutai M (1983) Anti-tumor effect by oral administration of Chlorella extract, PCM-4 by oral admission. Gan To Kagaku Zasshi 10:781–785 (in Japanese)Google Scholar
  197. Nuissier G, Diaba F, Dubois MG (2008) Bioactive agents from beach waste: Syringodium flotsam evaluation as a new source of l-chiro-inositol. Innov Food Sci Emerg Tech 9(3):396–400CrossRefGoogle Scholar
  198. O’Sullivan L, Murphy B, McLoughlin P, Duggan P, Peadar G, Lawlor PG et al (2010) Review: prebiotics from marine macroalgae for human and animal health applications. Mar Drugs 8(7):2038–2064PubMedPubMedCentralCrossRefGoogle Scholar
  199. Okada Y, Ishimaru A, Suzuki R, Okuyama T (2004) A new phloroglucinol derivative from the brown alga Eisenia bicyclis: potential for the effective treatment of diabetic complications. J Nat Prod 67:103–105PubMedCrossRefPubMedCentralGoogle Scholar
  200. Oliviera JS, Pires JOR, Morales RAV, Bloch JC, Schwartz CA, Freitas JS (2003) Toxicity of Puffer fish-two species (Lagocephalus Laevigatus, linaeus 1766 and Sphoeroides Spengleri, Bloch 1785) from the southeren Brazilian coast. J Venom Anim Toxins Incl Trop 9:76–82Google Scholar
  201. Olsen E, Grahl-Nielsen O (2003) Blubber fatty acids of minke whales: stratification, population identification and relation to diet. Mar Biol 142:13–24CrossRefGoogle Scholar
  202. Osborne NJ, Webb PM, Shaw GR (2001) The toxins of Lyngbya majuscula and their human and ecological health effects. Environ Int 27(5):381–392PubMedCrossRefPubMedCentralGoogle Scholar
  203. Pádua D, Rocha E, Gargiulo D, Ramos AA (2015) Bioactive compounds from brown seaweeds: phloroglucinol, fucoxanthin and fucoidan as promising therapeutic agents against breast cancer. Phytochem Lett 14:91–98CrossRefGoogle Scholar
  204. Pan W, Liu X, Ge F, Han J, Zheng T (2004) Perinerin, a novel antimicrobial peptide purified from the clamworm Perinereis aibuhitensis Grube and its partial characterization. J Biochem 135:297–304PubMedCrossRefPubMedCentralGoogle Scholar
  205. Pasquet V, Morisset P, Ihammouine S, Chepied A, Aumailley L, Berard JB et al (2011) Antiproliferative activity of violaxanthin isolated from bioguided fractionation of Dunaliella tertiolecta extracts. Mar Drugs 9:819–831PubMedPubMedCentralCrossRefGoogle Scholar
  206. Peng J, Rao Karumanchi V, Choo YM, Hamann MT (2008) Modern alkaloids. In: Fattorusso E, Taglialatela-Scafati O (eds), Wiley-VCH Pub, Weinheim, Germany, pp 189–232Google Scholar
  207. Pereira H, Barreira L, Figueiredo F, Custodio L, Vizetto-Duarte C, Polo C et al (2012) Polyunsaturated fatty acids of marine macroalgae: potential for nutritional and pharmaceutical applications. Mar Drugs 10:1920–1935PubMedPubMedCentralCrossRefGoogle Scholar
  208. Perrotta C, Buonanno F, Zecchini S, Giavazzi A, Serafini FP, Catalani E et al (2016) Climacostol reduces tumour progression in a mouse model of melanoma via the p53-dependent intrinsic apoptotic programme. Sci Rep 6:27281PubMedPubMedCentralCrossRefGoogle Scholar
  209. Pettit GR, Herald CL, Doubek DL, Herald DL (1982) Isolation and structure of bryostatin 1. J Am Chem Soc 104:6846–6848CrossRefGoogle Scholar
  210. Petrelli D, Buonanno F, Vital LA, Ortenz C (2012) Antimicrobial activity of the protozoan toxin climacostol and its derivatives. Biologia 67(3):525–552CrossRefGoogle Scholar
  211. Philip PA, Rea D, Thavasu P, Carmichael J, Stuart NS, Rockett H et al (1993) Phase I study of bryostatin 1: assessment of interleukin 6 and tumor necrosis factor alpha induction in vivo. The cancer research campaign phase i committee. J Natl Cancer Inst 85(22):1812–1818Google Scholar
  212. Piplani H, Vaish V, Sanyal SN (2012) Dolastatin 15, a mollusk linear peptide, and Celecoxib, a selective cyclooxygenase-2 inhibitor, prevent preneoplastic colonic lesions and induce apoptosis through inhibition of the regulatory transcription factor NF-κB and an inflammatory protein, iNOS. Eur J Cancer Prev 21:511–522PubMedCrossRefPubMedCentralGoogle Scholar
  213. Plavsic M, Terzic S, Ahel M, van den Berg CMG (2004) Folic acid in coastal waters of the Adriatic Sea Mar Freshw Res 53:1245–1252Google Scholar
  214. Poncet J (1999) The dolastatins, a family of promising antineoplastic agents. Curr Pharm Des 5(3):139–162Google Scholar
  215. Prener A, Storm HH, Nielsen NH (1996) Cancer of the male genital tract in Circumpolar Inuit. Acta Oncol Stockh Swed 35:589–593CrossRefGoogle Scholar
  216. Princep MR, Blunt JW, Munro MHG (1991) New cytotoxic B-carboline alkaloids from the marine bryzoans Cribricellina cribraria. J Nat Prod 54:1068–1076CrossRefGoogle Scholar
  217. Proteau PJ, Gerwick WH, Garcia-Pichel F, Castenholtz R (1993) The structure of scytonemin, an ultraviolet sunscreen pigment from the sheaths of cyanobacteria. Experientia 49:825–829PubMedCrossRefPubMedCentralGoogle Scholar
  218. Pulz O, Gross W (2004) Valuable products from biotechnology of microalgae. Appl Microbiol Biotechnol 65:635–648PubMedCrossRefPubMedCentralGoogle Scholar
  219. Pusateri Anthony E, McCarthy Simon J, Gregory Kenton W, Harris Richard A, Cardenas Luis McManus Albert T et al (2003) Effect of a Chitosan-based hemostatic dressing on blood loss and survival in a model of severe venous hemorrhage and hepatic injury in swine. The J Trauma: Inj, Infect Crit Care 54(1):177–182CrossRefGoogle Scholar
  220. Gao Q, Yu K, Ye YeXia, Shine MB, Wang C, Navarre DR, Kachroo A, Kachroo P (2014) Mono- and digalactosyldiacylglycerol lipids function nonredundantly to regulate systemic acquired resistance in plants. Cell Rep 9(5):1681–1691PubMedCrossRefPubMedCentralGoogle Scholar
  221. Rahman MA, Arshad A, Md. Yusoff F (2014) Sea Urchins (Echinodermata: Echinoidea): their biology, culture and bioactive compounds. In: Proceedings of the International Conference on Agricultural, Ecological and Medical Sciences (AEMS-2014) London (UK). DOI:  10.15242/IICBE.C714075
  222. Ramos AA, Polle JJ, Tran D, Cushman JC, Jin E, Varela JC (2011) The unicellular green alga Dunaliella salina Teod as a model for abiotic stress tolerance: genetic advances and future perspectives. Algae 26:3–20CrossRefGoogle Scholar
  223. Rao KV, Santarsiero BD, Mesecar AD, Schinazi RF, Tekwani BL, Hamann MT (2003) New manzamine alkaloids with activity against infectious and tropical parasitic diseases from an Indonesian sponge. J Nat Prod 66:823–828PubMedPubMedCentralCrossRefGoogle Scholar
  224. Rashid ZM, Lahaye E, Defer D, Douzenel P, Perrin B, Bourgougnon N et al (2009) Isolation of a sulphated polysaccharide from a recently discovered sponge species (Celtodoryx girardae) and determination of its anti-herpetic activity. Int J Biol Macromol 44:286–293PubMedCrossRefPubMedCentralGoogle Scholar
  225. Rasmussen RS, Morrissey MT (2007) Marine biotechnology for production of food ingredients. In Taylor SL (ed) Advances in food and nutrition research, 52, Elsevier, New York, pp 237–292Google Scholar
  226. Ravichandran S, Kathiresan K, Hemalatha B (2007) Anti-malarials from marine sponges. Biotechnol Mol Biol Rev 2(2):33–38Google Scholar
  227. Ravn H, Pedersen MF, Borum J, Andary C, Anthoni U, Christophen C et al (1994) Seasonal variation and distribution of two phenolic compounds, rosmarinic acid and caffeic acid, in leaves and root-rhizomes of eelgrass (Zostera marina L.). Ophelia 40(1):51–61CrossRefGoogle Scholar
  228. Rice DW (2009) Spermaceti. Encyclopedia of marine mammals (2nd ed.), pp 1098–1099CrossRefGoogle Scholar
  229. Rinaudo M (2007) Comprehensive glycoscience. In: Kamerling JP (ed) Seaweed polysaccharides, vol 2. Elsevier. Amsterdam, The Netherland, pp 691–735Google Scholar
  230. Rodriguez-Sanchez R, Ortiz-Butron R, Blas-Valdivia V, Hernandez-Garcia A, Cano-Europa E (2012) Phycobiliproteins or C-phycocyanin of Arthrospira (Spirulina) maxima protect against HgCl2-caused oxidative stress and renal damage. Food Chem 135:2359–2365PubMedCrossRefPubMedCentralGoogle Scholar
  231. Romay Ch, González R, Ledón N, Remirez D, Rimbau V (2003) C-phycocyanin: a biliprotein with antioxidant, anti-inflammatory and neuroprotective effects. Curr Protein Pept Sci 4:207–216PubMedCrossRefPubMedCentralGoogle Scholar
  232. Rowley DC, Hansen MST, Rhodes D, Sotriffer CA, Ni HH, McCammon JA et al (2002) Thalassiolins A-C: new marine-derived inhibitors of HIV cDNA integrase. Bioorg Med Chem 10:3619–3625PubMedCrossRefPubMedCentralGoogle Scholar
  233. Sabry OM, Goeger DE, Gerwick WH (2017) Biologically active new metabolites from a Florida collection of Moorea producens. Nat Prod Res 31(5):555–561PubMedCrossRefPubMedCentralGoogle Scholar
  234. Sadigh-Eteghad S, Talebi M, Farhoudi M, Mahmoudi J, Reyhani B (2013) Effects of Levodopa loaded chitosan nanoparticles on cell viability and caspase-3 expression in PC12 neural like cells. Neurosci (Riyadh) 18(3):281–283Google Scholar
  235. Sadovskaya I, Souissi A, Souissi S, Grard T, Lencel P, Greene CM et al (2014) Chemical structure and biological activity of a highly branched (1→3,1→6)-β-d-glucan from Isochrysis galbana. Carbohyd Polym 111:139–148CrossRefGoogle Scholar
  236. Sakai R, Higa T, Jefford CW, Bernardinelli G (1986) Manzamine A, a novel antitumor alkaloid from a sponge. J Am Chem Soc 108:6404–6405CrossRefGoogle Scholar
  237. Sanchez-Machado DI, Lopez-Hernandez J, Paseiro-Losada P, Lopez-Cervantes J (2004) Fatty acids, total lipid, protein and ash contents of processed edible seaweeds. Food Chem 85:439–444CrossRefGoogle Scholar
  238. Schwartz EF, Mourao CB, Moreira KG, Camargos TS, Mortari MR (2012) Arthropod venoms: a vast arsenal of insecticidal neuropeptides. Biopolym 98(4):385–405PubMedCrossRefPubMedCentralGoogle Scholar
  239. Schulze MB, Schulz M, Heidemann C, Schienkiewitz A, Hoffmann K, Boeing H (2007) Fiber and magnesium intake and incidence of type 2 diabetes: a prospective study and meta-analysis. Arch Intern Med 167:956–965PubMedCrossRefPubMedCentralGoogle Scholar
  240. Sci-Edu (2000) New cancer drug extracted from marine organism. People’s Daily. 2000. pp 1–4. www.fpeng.peopledaily.com.cn/200012/05/eng
  241. Shahidi F, Synowiecki J, Amarowicz R and Wanasundara U (1994) Omega-3 fatty acid composition and stability of seal lipids. In: Ho CT, Hartman TG (eds) Lipids in food flavors Copyright © 1994 American Chemical Society, ACS Symposium Series, vol 558, Chapter 16, pp 233–243Google Scholar
  242. Sharifuddin Y, Chin YX, Lim PE, Phang SM (2015) Potential bioactive compounds from seaweed for diabetes management. Mar Drugs 13:5447–5491PubMedPubMedCentralCrossRefGoogle Scholar
  243. Shi XM, Jiang Y, Chen F (2002) High-yield production of lutein by the green microalga Chlorella protothecoides in heterotrophic fed-batch culture. Biotechnol Prog 18:723–727PubMedCrossRefPubMedCentralGoogle Scholar
  244. Sica D, Picialli V, Masullo A (1984) Configuration at C-24 of sterols from the marine phanerogames Posidonia oceanic and Cymodocea nodosa. Phytochemistry 23(11):2609–2611CrossRefGoogle Scholar
  245. Sima P, Vetvicka V (2011) Bioactive substances with anti-neoplastic efficacy from marine invertebrates: porifera and coelenterata. World J Clin Oncol 2(11):355–361PubMedPubMedCentralCrossRefGoogle Scholar
  246. Simudu U, Kita-Tsukamoto K, Yasumoto T, Yotsu M (1990) Taxonomy of four marine bacterial strains that produce tetrodotoxin. Int J Syst Bacteriol 40:331–336CrossRefGoogle Scholar
  247. Singh D, Puri M, Wilkens S, Mathur AS, Tuli DK, Barrow CJ (2013) Characterization of a new zeaxanthin producing strain of Chlorella saccharophila isolated from New Zealand marine waters. Bioresour Technol 143:308–314PubMedCrossRefPubMedCentralGoogle Scholar
  248. Singh S, Kate BN, Banerjee UC (2005) Bioactive compounds from cyanobacteria and microalgae: an overview. Critical Rev Biotechnol 25:73–95CrossRefGoogle Scholar
  249. Singla S, Garg R (2013) Therapeutic potential of snake venom. Int Res J Pharm 4(11):9–16CrossRefGoogle Scholar
  250. Sivasubramanian K, Ravichandran S, Kumaresan M (2011) Preliminary studies for a new antibiotic from the marine mollusk Melo melo (Lightfoot, 1786) Asian Pacif J Tropic Med 4(4):310–314Google Scholar
  251. Skov MJ, Beck JC, de Kater AW, Shopp GM (2007) Nonclinical safety of ziconotide: an intrathecal analgesic of a new pharmaceutical class. Int J Toxicol 26(5):411–421PubMedCrossRefPubMedCentralGoogle Scholar
  252. Soontornchaiboon W, Joo SS, Kim SM (2012) Anti-inflammatory effects of violaxanthin isolated from microalga Chlorella ellipsoidea in RAW 264.7 macrophages. Biol Pharm Bull 35:1137–1144PubMedCrossRefPubMedCentralGoogle Scholar
  253. Sørensen L, Hantke A, Eriksen NT (2013) Purification of the photosynthetic pigment C-phycocyanin from heterotrophic Galdieria sulphuraria. J Sci Food Agric 93:2933–2938PubMedCrossRefPubMedCentralGoogle Scholar
  254. Spector AA, Kim HY (2015) Discovery of essential fatty acids. J Lipid Res 56(1):11–21PubMedPubMedCentralCrossRefGoogle Scholar
  255. Spencer L, Mann C, Metcalfe M, Webb M, Pollard C, Spencer D et al (2009) The effect of omega-3 FAs on tumour angiogenesis and their therapeutic potential. Eur J Cancer 45:2077–2086PubMedCrossRefPubMedCentralGoogle Scholar
  256. Spolaore P, Joannis-Cassan C, Duran E, Isambert A (2006) Commercial applications of microalgae. J Biosci Bioeng 101:87–96PubMedCrossRefPubMedCentralGoogle Scholar
  257. Stevenson CS, Capper EA, Roshak AK, Marquez B, Grace K, Gerwick WH et al (2002a) Scytomenin-a marine natural product inhibitor of kinases key in hyperproliferative inflammatory diseases. Inflammation Res 51:112–118CrossRefGoogle Scholar
  258. Stevenson CS, Capper EA, Roshak AK, Marquez B, Eichman C, Jackson JR (2002b) The identification and characterization of the marine natural product scytonemin as a novel antiproliferative pharmacophore. J Pharmacol Exp Ther 303:858–866PubMedCrossRefPubMedCentralGoogle Scholar
  259. Su JH, Wen ZH (2011) Bioactive cembrane-based diter- penoids from the soft coral Sinularia triangular. Mar Drugs 9:944–951PubMedPubMedCentralCrossRefGoogle Scholar
  260. Subhashini P, Dilipan E, Thangaradjou T, Papenbrock J (2013) Bioactive natural products from marine angiosperms: abundance and functions. Nat Prod Bioprospect 3:129–136PubMedCentralCrossRefGoogle Scholar
  261. Sudeesh Kumar PT, Praveen G, Raj M, Chennazhi KP, Jayakumar R (2014) Flexible, micro-porous chitosan–gelatin hydrogel/nanofibrin composite bandages for treating burn wounds. Royal Soc Chem RSC Adv 4:65081–65087CrossRefGoogle Scholar
  262. Suffness M, Newman DJ, Snader K (1989) Bioorganic marine chemistry. In: Scheuer PJ (ed) Springer Verlag, New York 3:131–168CrossRefGoogle Scholar
  263. Suganthy N, Karutha Pandian S, Pandima Devi K (2010) Neuroprotective effect of seaweeds inhabiting South Indian coastal area (Hare Island, Gulf of Mannar Marine Biosphere Reserve): cholinesterase inhibitory effect of Hypnea valentiae and Ulva reticulata. Neurosci Lett 468:216–219PubMedCrossRefPubMedCentralGoogle Scholar
  264. Summers LK, Fielding BA, Bradshaw HA, Ilic V, Beysen C, Clark ML et al (2002) Substituting dietary saturated fat with polyunsaturated fat changes abdominal fat distribution and improves insulin sensitivity. Diabetologia 45:369–377PubMedCrossRefPubMedCentralGoogle Scholar
  265. Swanson D, Block R, Mousa SA (2012) Omega -3 fatty acids EPA and DHA: health benefits thoughout life. Adv Nutr 3(1):1–7PubMedPubMedCentralCrossRefGoogle Scholar
  266. Swift AE, Swift TR (2008) Ciguatera. J Toxicol Clin Toxicol 31(1):1–29CrossRefGoogle Scholar
  267. Tabar AI, Acero S, ArreguiC Urdánoz M, Quirce S (2003) Asma y alergia por el colorante carmín [Asthma and allergy due to carmine dye]. Anales Del Sistema Sanitario De Navarra 26(Suppl 2):65–73 (in Spanish)PubMedPubMedCentralGoogle Scholar
  268. Tasiemski A, Schikorski D, Le Marrec-Croq F, Camp CPV, Boidin-Wichlacz U, Sautiere PE (2007) Hedistin: a novel antimicrobial peptide containing bromotryptophan constitutively the marine annelid, expressed in the NK cells-like of Nereis diversicolor. Dev Comp Immunol 31:749–762Google Scholar
  269. Thiemann GW, Iverson SJ (2008) Variation in blubber fatty acid composition amon marine mammals in the Canadian Arctic. Mar Mamm Sci 24(1):91–111CrossRefGoogle Scholar
  270. Vergeer LHT, Aarts TL, De Groot JD (1995) The ‘wasting disease’ and the effect of abiotic factors (light intensity, temperature salinity) and infection with Labyrinthula zosterae on the phenolic content of Zostera marina shoots. Aquat Bot 52(1–2):35–44CrossRefGoogle Scholar
  271. Vijayakumar S, Amirthanathn A (2014) Bioactivity of sea grass against the malarial fever mosquito Culex quinquefasciatus. Asian Pac J Trop Dis 4(4):287–291CrossRefGoogle Scholar
  272. Wang X, Zhang X (2013) Separation, antitumor activities, and encapsulation of polypeptide from Chlorella pyrenoidosa. Biotechnol Prog 29:681–687PubMedCrossRefPubMedCentralGoogle Scholar
  273. Wender PA, Koehler KE, Sharkey NA, Dell’Aquilla HL, Blumberg PM (1986) Analysis of phorbol ester pharmocophor on protein kinase C as a guide to the retional design of new classes of analogs. Proc Natl Acad Sci USA 83:4214–4218PubMedPubMedCentralCrossRefGoogle Scholar
  274. WHO (2012) World Health Organization, Global Vaccine Action Plan 2011–2020. GenevaGoogle Scholar
  275. WHO (2017) Cholera vaccines: WHO position paper No. 34, August 2017. Wkly Epidemiol Rec 92:477–500Google Scholar
  276. Yamada T, Iwamoto C, Yamagaki N, Yamanouchi T, Minoura K, Yamori T et al (2002) Leptosins M-N1, cytotoxic metabolites from a Leptosphaeria species separated from a marine alga. Structure determination and biological activities. Tetrahedron 58:479–487CrossRefGoogle Scholar
  277. Yousaf M, Hammond NL, Peng J, Wayhuono S, McIntosh KA, Charman WN, Mayer AMS, Hamann MT (2004) New manzamine alkaloids from an Indo-Pacific sponge. Pharmacokinetics, oral availability, and the significant activity of several manzamines against HIV-I, AIDS opportunistic infections, and inflammatory diseases. J Med Chem 47:3512–3517PubMedPubMedCentralCrossRefGoogle Scholar
  278. Yuan JP, Peng J, Yin K, Wang JH (2011) Potential health-promoting effects of astaxanthin: a high-value carotenoid mostly from microalgae. Mol Nutr Food Res 55:150–165PubMedCrossRefPubMedCentralGoogle Scholar
  279. Yuri K, Elena K, Valeri K, Maxim K (2012) Cerium binding activity of pectins isolated from the Seagrasses Zostera marina and Phyllospadix iwatensis. J Mar Drugs 10:834–848CrossRefGoogle Scholar
  280. Yuvaraj N, Kanmani P, Satishkumar R, Paari A, Pattukumar V, Arul V (2012) Seagrass as a potential source of natural antioxidant and anti-inflammatory agents. Pharm Biol 50(4):458–467PubMedCrossRefPubMedCentralGoogle Scholar
  281. Zapata O, McMillan C (1979) Phenolic acids in seagrass. Aquat Bot 7:307–317CrossRefGoogle Scholar
  282. Zasloff M, Adams AP, Beckerman B, Campbell A, Han Z, Luijten E et al (2011) Squalamine as a broad-spectrum systemic antiviral agent with therapeutic potential. Proc Natl Acad Sci 108(38):15978–15983PubMedPubMedCentralCrossRefGoogle Scholar
  283. Zhang W, Guo YW, Gu YC (2006a) Secondary metabolites from the South China Sea invertebrates: chemistry and biological activity. Curr Med Chem 13:2041–2090PubMedCrossRefPubMedCentralGoogle Scholar
  284. Zhang SY, Yi YH, Tang HF (2006b) Bioactive triterpene glycosides from the sea cucumber Holothuria fuscocinerea. J Nat Prod 69(10):1492–1495PubMedCrossRefPubMedCentralGoogle Scholar
  285. Zhang H, Shigemori H, Ichibashi M, Kosaka T, Pettit GR et al (1994) Convolutamides A-F, novel γ-lactam alkaloids from the marine bryozoan Amathia convoluta. Tetrahedron 50:10201–10206CrossRefGoogle Scholar
  286. Zhang Y-J, Gao Bo, Liu X-W (2015) Topical and effective hemostatic medicines in the battlefield. Int J Clin Exp Med 8(1):10–19PubMedPubMedCentralGoogle Scholar
  287. Zheng LH, Wang YJ, Sheng J, Wang F, Zheng Y, Lin XK et al (2011) Antitumor peptides from marine organisms. Mar Drugs 9:1840–1859PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of BotanyChittagong UniversityChittagongBangladesh

Personalised recommendations