Phytoconstituents—Active and Inert Constituents, Metabolic Pathways, Chemistry and Application of Phytoconstituents, Primary Metabolic Products, and Bioactive Compounds of Primary Metabolic Origin

  • A. N. M. AlamgirEmail author
Part of the Progress in Drug Research book series (PDR, volume 74)


Phytoconstituents are non-nutrient active plant chemical compounds or bioactive compounds and are responsible for protecting the plant against infections, infestations, or predation by microbes, pests, pathogens, or predators. Some are responsible for color, aroma, and other organoleptic properties. Phytoconstituents are synthesized in plants through primary and secondary metabolic pathways and many of them may be grouped as active drug constituents and inert nondrug constituents. A wide range of active components has been discovered and they have been divided into 16 main or more groups and the most important of them are alkaloids, terpenoids, phenols and phenolic glycosides, coumarins and their glycosides, anthraquinones and their glycosides, flavones and flavonoid glycosides or heterosides, mucilage and gums, tannins, volatile oils, saponins, cardioactive glycosides, cyanogenic glycosides, etc. Other relevant active constituents in plants, such as vitamins, minerals, amino acids, carbohydrates and fibers, some sugars, organic acids, lipids, and antibiotics, are essential nutrients. In addition to other functions, secondary metabolites produced in plants are used for communication as signal compounds to attract different pollinating agents including insects (honey bees, bumble bees, moths), birds, lizards, bats, etc. Classification of phytochemicals may be made based on their elemental constituents such as C & H; C, H & O; C, H, O, N, S & P containing compounds, O/N containing heterocyclic compounds, and other miscellaneous compounds. Some of these may be grouped as primary and others as secondary metabolites. Primary metabolic products consisting of C & H; C, H & O; N, S & P elements include hydrocarbons, carbohydrates, lipids, amino acids, proteins, nucleic acids, organic acids, etc. Genetic effects and environmental factors exert both qualitative and quantitative alterations of the active constituents in medicinal plants.


Phytoconstituents Active and inert constituents Metabolic pathways Primary and secondary metabolites Factors affecting the metabolic pathways Classification of elemental constituents 


  1. Aggarwal BB, Sundaram C, Malani N, Ichikawa H (2007) Curcumin: the Indian solid gold. Adv Exp Med Biol 595:1–75Google Scholar
  2. Aigner A, Juhl H, Malerczyk C, Tkybusch A, Benz CC, Czubayko F (2001) Expression of a truncated 100 kDa HER2 splice variant acts as an endogenous inhibitor of tumor cell proliferation. Oncogene 20:2101–2111PubMedCrossRefPubMedCentralGoogle Scholar
  3. Akhtar S, Hughes MD, Khan A (2000) The delivery of antisense therapeutics. Adv Drug Deliv Rev 44:3–21PubMedCrossRefPubMedCentralGoogle Scholar
  4. Albert A, Sareedenchai V, Heller W, Seidlitz HK, Zidorn C (2009) Temperature is the key to altitudinal variation of phenolics in Arnica montana L. c.v ARBO. Oecologia 160:1–8PubMedCrossRefPubMedCentralGoogle Scholar
  5. Alonso-Amelot ME, Oliveros-Bastidas A, Calcagno-Pisarelli MP (2007) Phenolics and condensed tannins of high altitude Pteridium arachnoideum in relation to sunlight exposure, elevation and rain regime. Biochem Syst Ecol 35:1–10CrossRefGoogle Scholar
  6. Alvarez-Salas LM (2008) Nucleic acids as therapeutic agents. Curr Top Med Chem 8:1379–1404PubMedCrossRefPubMedCentralGoogle Scholar
  7. Ambrogelly A, Palioura S, Söll D (2007) Natural expansion of the genetic code. Nat Chem Biol 3(1):29–35PubMedCrossRefPubMedCentralGoogle Scholar
  8. Anan T, Nakagawa N (1974) Effect of light on chemical constituents in the tea leaves. Nippon Nogeikagaku Kaishi 48:91–98CrossRefGoogle Scholar
  9. Anderson WF (1998) Human gene therapy. Nature (Lond) 392:25–30CrossRefGoogle Scholar
  10. Ashihara H, Sano H, Crozier A (2008) Caffeine and related purine alkaloids: biosynthesis, catabolism, function and genetic engineering. Phytochemistry 69:841–856PubMedCrossRefPubMedCentralGoogle Scholar
  11. Ashmead HD (ed) (1993) The role of amino acid chelates in animal nutrition. Noyes Publications, WestwoodGoogle Scholar
  12. Azuma H, Toyota M, Asakawa Y, Kawano S (1996) Naphthalene—a constituent of Magnolia flowers. Phytochemistry 42:999–1004CrossRefGoogle Scholar
  13. Baekelandt V, De Strooper B, Nuttin B, Debyser Z (2000) Gene therapeutic strategies for neurodegenerative diseases. Curr Opin Mol 2:540–554Google Scholar
  14. Bell EA (2003) Nonprotein amino acids of plants: significance in medicine, nutrition and agriculture. J Agric Food Chem 51(10):2854–2865PubMedCrossRefPubMedCentralGoogle Scholar
  15. Bernays EA, Chapman RF (2000) Plant secondary compounds and grasshoppers: beyond plant defences. J Chem Ecol 26:1774–1794Google Scholar
  16. Bhattacharjee A, Bansal M (2005) Collagen structure: the Madras triple helix and the current scenario. IUBMB Life (Int Union Biochem Mol Biol Life) 57(3):161–172CrossRefGoogle Scholar
  17. Blaser HU (1992) The chiral pool as a source of enantioselective catalysts and auxiliaries. Chem Rev 92(5):935–952CrossRefGoogle Scholar
  18. Böck A, Forchhammer K, Heider J, Baron C (1991) Selenoprotein synthesis: an expansion of the genetic code. Trends Biochem Sci 16(12):463–467PubMedCrossRefPubMedCentralGoogle Scholar
  19. Bourke SL, Kohn J (2003) Polymers derived from the amino acid L-tyrosine: polycarbonates, polyarylates and copolymers with poly (ethylene glycol). Adv Drug Deliv Rev 55(4):447–466PubMedCrossRefPubMedCentralGoogle Scholar
  20. Briskin DP (2000) Medicinal plants and phytomedicines. Linking plant biochemistry and physiology to human health. Plant Physiol 124:507–514PubMedPubMedCentralCrossRefGoogle Scholar
  21. Brosnan JT (2000) Glutamate, at the interface between amino acid and carbohydrate metabolism. J Nutr 130(4S Suppl):988S–990SPubMedCrossRefPubMedCentralGoogle Scholar
  22. Brown GD (2010) The biosynthesis of artemisinin (Qinghaosu) and the phytochemistry of Artemisia annua L. (Qinghao). Molecules 15:7603–7698PubMedCrossRefPubMedCentralGoogle Scholar
  23. Bunnel BA, Morgan RA (1996) Gene therapy for HIV infection. Drugs Today 32:209–224Google Scholar
  24. Burchard P, Bilger W, Weissenböck G (2000) Contribution of hydroxycinnamates and flavonoids to epidermal shielding of UV-A and UV-B radiation in developing rye primary leaves as assessed by UV induced chlorophyll fluorescence measurements. Plant Cell Environ 23:1373–1380CrossRefGoogle Scholar
  25. Caplen NJ (2004) Gene therapy progress and prospects. Downregulating gene expression: the impact of RNA interference. Gene Ther 11:1241–1248PubMedCrossRefPubMedCentralGoogle Scholar
  26. Chaloin L, Lehmann MJ, Sczakiel G, Restle T (2002) Endogenous expression of a high-affinity pseudoknot RNA aptamer suppresses replication of HIV-1. Nucleic Acids Res 30:4001–4008PubMedPubMedCentralCrossRefGoogle Scholar
  27. Christie RJ, Alfenito MR, Walbot V (1994) Impact of low temperature stress on general phenylpropanoid and anthocyanin pathways: enhancement of transcript abundance and anthocyanin pigmentation in maize seedlings. Planta 194:541–549CrossRefGoogle Scholar
  28. Coley PD, Bryant JP, Chapin SF (1985) Resource availability and plant antiherbivore defence. Science 230:895–899PubMedCrossRefPubMedCentralGoogle Scholar
  29. Cox PA, Davis DA, Mash DC, Metcalf JS, Banack SA (2016) Dietary exposure to an environmental toxin triggers neurofibrillary tangles and amyloid deposits in the brain. Proc Biol Sci 283(1823):20152397PubMedPubMedCentralCrossRefGoogle Scholar
  30. Crooke ST (1998) Vitravene another piece in the mosaic. Antisense Nucleic Acid Drug Dev 8:vii–viiiPubMedCrossRefPubMedCentralGoogle Scholar
  31. Daniell H, Streatfield SJ, Wycoff K (2001) Medical molecular farming: production antibodies, biopharmaceuticals and edible vaccines in plants. Trends Plant Sci 6:219–226PubMedPubMedCentralCrossRefGoogle Scholar
  32. de Soultrait VR, Lozach PY, Altmeyer R, Tarrago-Litvak L, Litvak S, Andreola ML (2002) DNA aptamers derived from HIV-1 RNase H inhibitors are strong anti-integrase agents. J Mol Biol 324:195–203PubMedCrossRefGoogle Scholar
  33. Dimitrov DS (2012) Therapeutic proteins. Methods Mol Biol 899:1–26PubMedCrossRefGoogle Scholar
  34. Dixon RA, Paiva NL (1995) Stress-induced phenylpropanoid metabolism. Plant Cell 7:1085–1097PubMedPubMedCentralCrossRefGoogle Scholar
  35. Dorsett Y, Tuschl T (2004) siRNAs: applications in functional genomics and potential as therapeutics. Nat Rev Drug Discov 3:318–329PubMedCrossRefPubMedCentralGoogle Scholar
  36. Dunlop RA, Main BJ, Rodgers KJ (2015) The deleterious effects of non-protein amino acids from desert plants on human and animal health. J Arid Environ 112(Part B):152–158CrossRefGoogle Scholar
  37. Eckey-Kaltenbach H, Ernst D, Heller W, Sandermann H (1994) Biochemical plants responses to ozone. IV. cross-induction of defensive pathways in parsley (Petroselinum crispum L.) plants. Plant Physiol 104:67–74PubMedPubMedCentralCrossRefGoogle Scholar
  38. Eisner T, Meinwald J (eds) (1995) Chemical ecology: the chemistry of biotic interaction. National Academy Press, Washington, DC.
  39. EC, European Commission (2002) Opinion of the scientific committee on food on the risks to human health of polycyclic aromatic hydrocarbons in food. SCF/CS/CNTM/PAH/29Google Scholar
  40. Fischer R, Twyman RM, Schillberg S (2003) Production of antibodies in plants and their use for global health. Vaccine 21:820–825PubMedCrossRefPubMedCentralGoogle Scholar
  41. Fournier AR, Proctor JTA, Gauthier L, Khanizadeh S, Belanger A, Gosselin A et al (2003) Understory light and root ginsenosides in forest-grown Panax quinquefolius. Phytochemistry 63:777–782PubMedCrossRefPubMedCentralGoogle Scholar
  42. Fowder L, Lea PJ (1979) The nonprotein amino acids of plants. Adv Enzymol 50:117Google Scholar
  43. Frankel AE, Powell BL, Duesbery NS, Vande Woude GF, Leppla SH (2002) Anthrax fusion protein therapy of cancer. Curr Protein Pept Sci 3(4):399–407PubMedCrossRefPubMedCentralGoogle Scholar
  44. Fürst P, Stehle P (2004) What are the essential elements needed for the determination of amino acid requirements in humans? J Nutr 134(6 Suppl):1558S–1565SPubMedCrossRefPubMedCentralGoogle Scholar
  45. Galanis E, Russell S (2001) Cancer gene therapy clinical trials: lessons for the future. Br J Cancer 85:1432–1436PubMedPubMedCentralCrossRefGoogle Scholar
  46. Ganzera M, Guggenberger M, Stuppner H, Zidorn C (2008) Altitudinal variation of secondary metabolite profiles in flowering heads of Matricaria chamomilla cv BONA. Planta Med 74:453–457PubMedCrossRefPubMedCentralGoogle Scholar
  47. Gao X, Chooi YH, Ames BD, Wang P, Walsh CT, Tang Y (2011) Fungal indole alkaloid biosynthesis: genetic and biochemical investigation of the tryptoquialanine pathway in Penicillium aethiopicum. J Am Chem Soc 133(8):2729–2741PubMedPubMedCentralCrossRefGoogle Scholar
  48. Garattini S (2000) Glutamic acid, twenty years later. J Nutr 130(4S Suppl):901S–909SPubMedCrossRefPubMedCentralGoogle Scholar
  49. Glynn C, Ronnberg-Wastljung AC, Julkunen-Tiitto R, Weih M (2004) Willow genotype, but not drought treatment, affects foliar phenolic concentrations and leaf-beetle resistance. Entomol Exp Appl 113:1–14CrossRefGoogle Scholar
  50. Goldstein DA, Thomas JA (2004) Biopharmaceuticals derived from genetically modified plants. QJM Int J Med 97:705–716CrossRefGoogle Scholar
  51. Goodwin TW, Mercer EI (1983) Introduction to plant biochemistry, 2nd edn. Pergamon Press, Oxford, pp 328–399Google Scholar
  52. Grass S, Zidorn C, Blattner FR, Stuppner H (2006) Comparative molecular and phytochemical investigation of Leontodon autumnalis (Asteraceae, Lactuceae) populations from central Europe. Phytochemistry 67:122–131PubMedCrossRefPubMedCentralGoogle Scholar
  53. Grayer RJ, Harborne JB (1994) A survey of antifungal compounds from higher plants 1982–1993. Phytochemistry 37:19–42CrossRefGoogle Scholar
  54. Gregory SG, Barlow KF, McLay KE, Kaul R, Swarbreck D, Dunham A, Scott CE et al (2006) The DNA sequence and biological annotation of human chromosome 1. Nature 441(7091):315–321PubMedCrossRefPubMedCentralGoogle Scholar
  55. Gross RA, Kalra B (2002) Biodegradable polymers for the environment. Science 297(5582):803–807PubMedCrossRefPubMedCentralGoogle Scholar
  56. Hagerman AE, Butler LG (1991) Tannins and lignins. In: Rosenthal GA, Berenbaum MR (eds) Herbivores: their interactions with secondary plant metabolites, vol 1, 2nd edn. The chemical participants. Academic Press, New York, pp 355–388CrossRefGoogle Scholar
  57. Harada K, Fukusaki E (2009) Profiling of primary metabolite by means of capillary electrophoresis-mass spectrometry and its application for plant science. Plant Biotech 26:47–52CrossRefGoogle Scholar
  58. Harvell CD, Tollrian R (1999) Why inducible defenses? In: Tollrian R, Harvell CD (eds) The ecology and evolution of inducible defenses. Princeton University Press, Princeton, pp 3–9Google Scholar
  59. Harvey RG (1997) Polycyclic aromatic hydrocarbons. Wiley-VCH, New York, xiii-667ppGoogle Scholar
  60. He X, Huang W, Chen W, Dong T, Liu C, Chen Z et al (2009) Changes of main secondary metabolites in leaves of Ginkgo biloba in response to ozone fumigation. J Environ Sci 21:199–203CrossRefGoogle Scholar
  61. Heby O, Persson L, Rentala M (2007) Targeting the polyamine biosynthetic enzymes: a promising approach to therapy of African sleeping sickness, Chagas’ disease, and leishmaniasis. Amino Acids 33(2):359–366PubMedCrossRefPubMedCentralGoogle Scholar
  62. Heftmann E (1975) Function of steroids in plants. Phytochemistry 14:891–901CrossRefGoogle Scholar
  63. Hochbaum AI, Kolodkin-Gal I, Foulston L, Kolter R, Aizenberg J, Losick R (2011) Inhibitory effects of d-amino acids on Staphylococcus aureus biofilm development. J Bacteriol 193(20):5616–5622PubMedPubMedCentralCrossRefGoogle Scholar
  64. Holtcamp W (2012) The emerging science of BMAA: do cyanobacteria contribute to neurodegenerative disease? Environ Health Perspect 120(3):A110–A116PubMedPubMedCentralCrossRefGoogle Scholar
  65. Horner AA, van Uden JH, Jubeldia JM et al (2001) DNA-based immunotherapeutics for the treatment of allergic disease. Immunol Rev 179:102–118PubMedCrossRefPubMedCentralGoogle Scholar
  66. Howsam M, Jones K (1998) Sources of PAHs in the environment. In: Neilson AH (ed) PAHs and related compounds. Springer, Berlin, pp 137–174CrossRefGoogle Scholar
  67. Huang T, Jander G, de Vos M (2011) Non-protein amino acids in plant defense against insect herbivores: representative cases and opportunities for further functional analysis. Phytochemistry 72(13):1531–1537PubMedCrossRefPubMedCentralGoogle Scholar
  68. Huang ZA, Zhao T, Fan HJ, Wang N, Zheng SS, Ling HQ (2012) The up-regulation of ntan 2 expression at low temperature is required for anthocyanin accumulation in juvenile leaves of lc-transgenic tobacco (Nicotiana tabacum L.). J Genet Genomics 20:149–156CrossRefGoogle Scholar
  69. Hughes DA (1999) Effects of carotenoids on human immune function. Proc Nutr Soc 58(3):713–718PubMedCrossRefPubMedCentralGoogle Scholar
  70. Ibañez E, Cifuentes A (2013) Benefits of using algae as natural sources of functional ingredients. J Sci Food Agric 93(4):703–709PubMedCrossRefPubMedCentralGoogle Scholar
  71. Jaakola L, Maatta-Riihinen K, Karenlampi S, Hohtola A (2004) Activation of flavonoid biosynthesis by solar radiation in bilberry (Vaccinium myrtillus L.) leaves. Planta 218:721–728PubMedCrossRefPubMedCentralGoogle Scholar
  72. Jayasena SD (1999) Aptamers: an emerging class of molecules that rival antibodies in diagnostics. Clin Chem 45:1628–1650PubMedPubMedCentralGoogle Scholar
  73. Jenkins GI (2009) Signal transduction in responses to UV-B radiation. Annu Rev Plant Biol 60:407–413PubMedCrossRefPubMedCentralGoogle Scholar
  74. Johnston SA, Talaat AM, McGuire MJ (2002) Genetic immunization: what’s in a name? Review article. Arch Med Res 33:325–329PubMedCrossRefPubMedCentralGoogle Scholar
  75. Jordan DN, Green TH, Chappelka AH, Lockaby BG, Meldahl RS, Gjerstad DH (1991) Response of total tannins and phenolics in loblolly pine foliage exposed to ozone and acid rain. J Chem Ecol 17(3):505–513PubMedCrossRefPubMedCentralGoogle Scholar
  76. Karban R, Baldwin IT (1997) Induced responses to herbivory. University of Chicago Press, ChicagoCrossRefGoogle Scholar
  77. Kataoka H, Ishizaki A, Saito K (2010) On-line automated analysis of polycyclic aromatic hydrocarbons—applications to herbal medicines. Chimica Oggi—Chem Today 28:21–24Google Scholar
  78. Kaur G, Roy I (2008) Therapeutic applications of aptamers. Expert Opin Invest Drugs 17(1):43–60CrossRefGoogle Scholar
  79. Kavanaugh CJ, Trumbo PR, Ellwood KC (2007) The U.S. food and drug administration’s evidence-based review for qualified health claims: tomatoes, lycopene, and cancer. J Natl Cancer Inst 99(14):1074–1085PubMedCrossRefPubMedCentralGoogle Scholar
  80. Kazan K, Manners JM (2011) The interplay between light and jasmonate signalling during defence and development. J Exp Bot 62:4087–4100PubMedCrossRefPubMedCentralGoogle Scholar
  81. Ketchem RR, Hu W, Cross TA (1993) High-resolution conformation of gramicidin A in a lipid bilayer by solid-state NMR. Science 261(5127):1457–1460PubMedCrossRefPubMedCentralGoogle Scholar
  82. Khoury GA, Baliban RC, Floudas CA (2011) Proteome-wide post-translational modification statistics: frequency analysis and curation of the swiss-prot database. Sci Rep 1, Article number: 90Google Scholar
  83. Klein RM (1987) The green world: an introduction to plants and people. Harper and Row, New YorkGoogle Scholar
  84. Kliebenstein DJ (2004) Secondary metabolites and plant/environment interactions: a view through Arabidopsis thaliana tinged glasses. Plant Cell Environ 27:675–684CrossRefGoogle Scholar
  85. Kolodkin-Gal I, Romero D, Cao S, Clardy J, Kolter R, Losick R (2010) D-amino acids trigger biofilm disassembly. Science 328(5978):627–629PubMedPubMedCentralCrossRefGoogle Scholar
  86. Kostrzewa RM, Nowak P, Kostrzewa JP, Kostrzewa RA, Brus R (2005) Peculiarities of L:DOPA treatment of Parkinson’s disease. Amino Acids 28(2):157–164PubMedCrossRefPubMedCentralGoogle Scholar
  87. Kouki M, Manetas Y (2002) Resource availability affects differentially the levels of gallotannins and condensed tannins in Ceratonia siliqua. Biochem Syst Ecol 30:631–639CrossRefGoogle Scholar
  88. Kovács A, Vasas A, Hohmann J (2008) Natural phenanthrenes and their biological activity. Phytochemistry 69(5):1084–1110PubMedCrossRefPubMedCentralGoogle Scholar
  89. Krajian H, Odeh A (2013) Polycyclic aromatic hydrocarbons in medicinal plants from Syria. Toxicol Environ Chem 95:942–953CrossRefGoogle Scholar
  90. Lavoir AV, Staudt M, Schnitzler JP, Landais D, Massol F, Rocheteau A et al (2009) Drought reduced monoterpene emissions from Quercus ilex trees: results from a throughfall displacement experiment within a forest ecosystem. Biogeosciences 6:863–893CrossRefGoogle Scholar
  91. Leader B, Baca QJ, Golan DE (2008) Protein therapeutics: a summary and pharmacological classification. Nat Rev Drug Discov 7(1):21–39PubMedCrossRefPubMedCentralGoogle Scholar
  92. Lee WH, Lin RJ, Lin SY, Chen YC, Lin HM, Liang YC (2011) Osthole enhances glucose uptake through activation of AMP-activated protein kinase in skeletal muscle cells. J Agric Food Chem 59(24):12874PubMedCrossRefPubMedCentralGoogle Scholar
  93. Leuchtenberger W, Huthmacher K, Drauz K (2005) Biotechnological production of amino acids and derivatives: current status and prospects. Appl Microbiol Biotechnol 69(1):1–8PubMedCrossRefPubMedCentralGoogle Scholar
  94. Lu Y, Freeland S (2006) On the evolution of the standard amino-acid alphabet. Genome Biol 7(1):1167CrossRefGoogle Scholar
  95. Ma JK-C, Drake PMW, Christou P (2003) The production of recombinant pharmaceutical proteins in plants. Nat Rev Genet 4:794–805PubMedCrossRefPubMedCentralGoogle Scholar
  96. Mardan T, Kopecek J, Kissel T (2002) Prospects for cationic polymers in gene and oligonucleotide therapy against cancer. Adv Drug Deliv Rev 54:715–758CrossRefGoogle Scholar
  97. Markou G, Nerantzis E (2013) Microalgae for high-value compounds and biofuels production: a review with focus on cultivation under stress conditions. Biotechnol Adv 31(8):1532–1542PubMedCrossRefPubMedCentralGoogle Scholar
  98. Mauricio R (1998) Costs of resistance to natural enemies in field populations of the annual plant Arabidopsis thaliana. Am Nat 151(1):20–28PubMedPubMedCentralGoogle Scholar
  99. Mendes RL, Reis AD, Palavra AF (2006) Supercritical CO2 extraction of γ-linolenic acid and other lipids from Arthrospira (Spirulina) maxima: comparison with organic solvent extraction. Food Chem 99(1):57–63CrossRefGoogle Scholar
  100. Miean KH, Mohamed S (2001) Flavonoid (myricetin, quercetin, kaempferol, luteolin, and apigenin) of edible tropical plants. J Agric Food Chem 49(6):3106–3112PubMedCrossRefPubMedCentralGoogle Scholar
  101. Moran-Palacio EF, Tortoledo O, Yanez-Farias GA, Alfredo Rosas-Rodríguez JA, Zamora-Álvarez LA, Stephens-Camacho NA et al (2014) Determination of amino acids in medicinal plants from Southern Sonora, Mexico. Trop J Pharm Res 13(4):601–606CrossRefGoogle Scholar
  102. Moreno-Garrido I (2008) Microalgae immobilization: current techniques and uses. Bioresour Technol 99(10):3949–3964PubMedCrossRefPubMedCentralGoogle Scholar
  103. Mulherkar R (2001) Gene therapy for cancer. Curr Sci 81:555–560Google Scholar
  104. Müller DG, Jaenicke L, Donike M, Akintobi T (1971) Sex attractant in brown algae: chemical structure. Science 171(3973):815–817PubMedCrossRefPubMedCentralGoogle Scholar
  105. Ncube B, Finnie JF, Van Staden J (2011) Seasonal variation in antimicrobial and phytochemical properties of frequently used medicinal bulbous plants from South Africa. S Afr J Bot 77:387–396CrossRefGoogle Scholar
  106. Niinemets Ü (2010) Mild versus severe stress and BVOCs: thresholds, priming and consequences. Trends Plant Sci 15:145–153PubMedCrossRefPubMedCentralGoogle Scholar
  107. Nobre B, Marcelo F, Passos R et al (2006) Supercritical carbon dioxide extraction of astaxanthin and other carotenoids from the microalga Haematococcus pluvialis. Eur Food Res Technol 223(6):787–790CrossRefGoogle Scholar
  108. Nunn PB, Bell EA, Watson AA, Nash RJ (2010) Toxicity of non-protein amino acids to humans and domestic animals. Nat Prod Commun 5(3):485–504PubMedPubMedCentralGoogle Scholar
  109. Otsu M, Candotti F (2002) Gene therapy in infants with severe combined immunodeficiency. BioDrugs 16:229–239PubMedCrossRefPubMedCentralGoogle Scholar
  110. Palavra AMF, Coelho JP, Barroso JG et al (2011) Supercritical carbon dioxide extraction of bioactive compounds from microalgae and volatile oils from aromatic plants. J Supercrit Fluids 60:21–27CrossRefGoogle Scholar
  111. Park MH (2006) The post-translational synthesis of a polyamine-derived amino acid, hypusine, in the eukaryotic translation initiation factor 5A (eIF5A). J Biochem 139(2):161–169PubMedPubMedCentralCrossRefGoogle Scholar
  112. Parker J (1977) Phenolics in black oak bark and leaves. J Chem Ecol 3:489–496CrossRefGoogle Scholar
  113. Pavarini DP, Pavarini SP, Niehues M, Lopes NP (2012) Exogenous influences on plant secondary metabolite levels. Anim Feed Sci Technol 176:5–16CrossRefGoogle Scholar
  114. Pennycooke JC, Cox S, Stushnoff C (2005) Relationship of cold acclimation, total phenolic content and antioxidant capacity with chilling tolerance in petunia (Petunia×hybrida). Environ Exp Bot 53:225–232CrossRefGoogle Scholar
  115. Pesci EC, Milbank JB, Pearson JP, McKnight S, Kende AS, Greenberg EP et al (1999) Quinoline signaling in the cell to cell communication system of Pseudomonas aeruginosa. Proc Natl Acad Sci U S A 96(20):11229–11234PubMedPubMedCentralCrossRefGoogle Scholar
  116. Prasad TK (1996) Mechanisms of chilling-induced oxidative stress injury and tolerance in developing maize seedlings: changes in antioxidant system, oxidation of proteins and lipids and protease activities. Plant J 10:1017–1026CrossRefGoogle Scholar
  117. Pushpendra S, Arvind P, Anil B (2012) Nucleic acids as therapeutics. In: Erdmann VA, Barciszewski J (eds) From nucleic acids sequences to molecular medicine. RNA Technologies, Springer, Berlin, pp 19–45CrossRefGoogle Scholar
  118. Ramani S, Chelliah J (2007) UV-B-induced signaling events leading to enhanced-production of catharanthine in Catharanthus roseus cell suspension cultures. BMC Plant Biol 7:61PubMedPubMedCentralCrossRefGoogle Scholar
  119. Reeds PJ (2000) Dispensable and indispensable amino acids for humans. J Nutr 130(7):1835S–1840SPubMedCrossRefPubMedCentralGoogle Scholar
  120. Reif C, Arrigoni E, Schärer H, Nyström L, Hurrell RF (2013) Carotenoid database of commonly eaten Swiss vegetables and their estimated contribution to carotenoid intake. J Food Compos Anal 29:64–72CrossRefGoogle Scholar
  121. Rich A, RajBhandary UL (1976) Transfer RNA: molecular structure, sequence, and properties. Annu Rev Biochem 45:805–860PubMedCrossRefPubMedCentralGoogle Scholar
  122. Rodgers KJ, Samardzic K, Main BJ (2015) Toxic nonprotein amino acids. Plant toxins. Springer Science, pp 1–20Google Scholar
  123. Rosenthal GA (1991) The biochemical basis for the deleterious effects of L-canavanine. Phytochemistry 30:1055–1058CrossRefGoogle Scholar
  124. Rother M, Krzycki JA (2010) Selenocysteine, pyrrolysine, and the unique energy metabolism of methanogenic archaea. Archaea 1–14CrossRefGoogle Scholar
  125. Rozema J, Van de Staaij J, Björn LO, Calwell M (1997) UV-B as an environmental factor in plant life: stress and regulation. Trends Ecol Evol 12:22–28PubMedCrossRefPubMedCentralGoogle Scholar
  126. Saghyan AS, Langer P (2016) Asymmetric synthesis of non-proteinogenic amino acids. Wiley, New YorkCrossRefGoogle Scholar
  127. Sakami W, Harrington H (1963) Amino acid metabolism. Annu Rev Biochem 32(1):355–398PubMedCrossRefPubMedCentralGoogle Scholar
  128. Sala F, Rigano MM, Barbante A, Basso B, Walmsley AM, Castiglione S (2003) Vaccine antigen production in transgenic plants: strategies, gene constructs and perspectives. Vaccine 21:803–808PubMedCrossRefPubMedCentralGoogle Scholar
  129. Sanda F, Endo T (1999) Syntheses and functions of polymers based on amino acids. Macromol Chem Phys 200(12):2651–2661CrossRefGoogle Scholar
  130. Santos RM, Fortes GAC, Ferri PH, Santos SC (2011) Influence of foliar nutrients on phenol levels in leaves of Eugenia uniflora. Rev Bras Farmacogn 21:581–586CrossRefGoogle Scholar
  131. Savelieva KV, Zhao S, Pogorelov VM, Rajan I, Yang Q, Cullinan E et al (2008) Genetic disruption of both tryptophan hydroxylase genes dramatically reduces serotonin and affects behavior in models sensitive to antidepressants. PloS One 3(10):e3301. Scholar
  132. Schafer H, Wink M (2009) Medicinally important secondary metabolites in recombinant microorganisms or plants: progress in alkaloid biosynthesis. Biotechnol J 4(12):1684–1703PubMedCrossRefPubMedCentralGoogle Scholar
  133. Shama LM, Peterson RKD (2004) The benefits and risks of producing pharmaceutical proteins in plants. Risk Manag Matters 2(4):28–33Google Scholar
  134. Shankar P, Manjunath N, Lieberman J (2005) The prospect of silencing disease using RNA interference. J Am Med Assoc 293:1367–1373CrossRefGoogle Scholar
  135. Sharkey TD, Loreto F (1993) Water-stress, temperature, and light effects on the capacity for isoprene emission and photosynthesis of Kudzu leaves. Oecologia 95:328–333PubMedCrossRefPubMedCentralGoogle Scholar
  136. Sharkey TD, Yeh SS (2001) Isoprene emission from plants. Annu Rev Plant Physiol Plant Mol Biol 52:407–436PubMedCrossRefPubMedCentralGoogle Scholar
  137. Shemin D, Rittenberg D (1946) The biological utilization of glycine for the synthesis of the protoporphyrin of hemoglobin. J Biol Chem 166(2):621–625PubMedPubMedCentralGoogle Scholar
  138. Shiga T, Shoji K, Shimada H, Hashida SN, Goto F, Yoshihara T (2009) Effect of light quality on rosmarinic acid content and antioxidant activity of sweet basil Ocimum basilicum L. Plant Biotechnol 26:255–259CrossRefGoogle Scholar
  139. Siemens DH, Garner SH, Mitchell-Olds T, Callaway RM (2002) Cost of defense in the context of plant competition: Brassica rapa may grow and defend. Ecology 83(2):505–517CrossRefGoogle Scholar
  140. Singsaas EL, Sharkey TD (2000) The effects of high temperature on isoprene synthesis in oak leaves. Plant Cell Environ 23:751–757CrossRefGoogle Scholar
  141. Slama K (1980) Animal hormone and antihormones in plants. Biochem Physiol Pflanzen 175:177–193CrossRefGoogle Scholar
  142. Smee DF, Bailey KW, Wong MH, O’Keefe BR, Gustafson KR, Mishin VP et al (2008) Treatment of influenza A (H1N1) virus infections in mice and ferrets with cyanovirin-N. Antiviral Res 80(3):266–271PubMedPubMedCentralCrossRefGoogle Scholar
  143. Soldatenkov AT, Kolyadina NM, Shendrik IV (2001) Fundamentals of organic chemistry of drugs. Khimiya, Moscow, p 36Google Scholar
  144. Stegink LD (1987) The aspartame story: a model for the clinical testing of a food additive. Am J Clin Nutr 46(1 Suppl):204–215PubMedCrossRefPubMedCentralGoogle Scholar
  145. Stiling P, Cornelissen T (2007) How does elevated carbon dioxide (CO2) affect plant–herbivore interactions? A field experiment and meta-analysis of CO2-mediated changes on plant chemistry and herbivore performance. Glob Change Biol 13:1823–1842CrossRefGoogle Scholar
  146. Streatfield SJ, Lane JR, Brooks CA, Barker DK, Poage ML, Mayor JM et al (2003) Corn as a production system for human and animal vaccines. Vaccine 21:812–815PubMedCrossRefPubMedCentralGoogle Scholar
  147. Stryer L, Berg JM, Tymoczko JL (2007) Biochemistry, 6th edn. W.H. Freeman, San Francisco, pp 679–706Google Scholar
  148. Stull RA, Szoka FC Jr (1995) Antigene, ribozyme and aptamer nucleic acid drugs: progress and prospects. Pharm Res 12:463–465CrossRefGoogle Scholar
  149. Suslow TV, Thomas BR, Bradford KJ (2002) Biotechnology provides new tools for planting. University of California Division of Agriculture and Natural Resources, Publication 8043.
  150. Szakie A, Pączkowski C, Henry M (2011) Influence of environmental biotic factors on the content of saponins in plants. Phytochem Rev 10(4):493–502CrossRefGoogle Scholar
  151. Taiz L, Zeiger E (2006) Plant physiology, 5th edn. Sinauer Associates Inc, Sunderland, MA, USA, p 700Google Scholar
  152. Tatsuta K, Hosokawa S (2006) Total syntheses of bioactive natural products from carbohydrates. A Rev Sci Technol Adv Mat 7:397–410CrossRefGoogle Scholar
  153. Théobald-Dietrich A, Giegé R, Rudinger-Thirion JL (2005) Evidence for the existence in mRNAs of a hairpin element responsible for ribosome dependent pyrrolysine insertion into proteins. Biochimie 87(9–10):813–817PubMedCrossRefPubMedCentralGoogle Scholar
  154. Thomas BR, Van Deynze A, Bradford KJ (2002) Production of Therapeutic proteins in plants. Agricultural biotechnology in California Series, Publication 8078. Division of Agriculture and Natural Resources, University of California-Davis, pp 1–12.
  155. Thombre SM, Sarwade BD (2005) Synthesis and biodegradability of polyaspartic acid: a critical review. J Macromol Sci Part A 42(9):1299–1315CrossRefGoogle Scholar
  156. Turner EH, Loftis JM, Blackwell AD (2006) Serotonin a la carte: supplementation with the serotonin precursor 5-hydroxytryptophan. Pharmacol Ther 109(3):325–338PubMedCrossRefPubMedCentralGoogle Scholar
  157. Uherek C, Wels W (2000) DNA-carrier proteins for targeted gene delivery. Adv Drug Deliv Rev 44:153–166PubMedCrossRefPubMedCentralGoogle Scholar
  158. Van Etten HD, Mansfield JW, Bailey JA, Farmer EE (1994) Two classes of plant antibiotics: phytoalexins versus phytoanticipins. Plant Cell 6:1191–1192CrossRefGoogle Scholar
  159. Vermeer C (1990) Gamma-carboxyglutamate-containing proteins and the vitamin K-dependent carboxylase. Biochem J 266(3):625–636PubMedPubMedCentralCrossRefGoogle Scholar
  160. Vijayvergia R, Kumar J (2007) Quantification of primary metabolites of Nerium indicum Mill. Asian J Exp Sci 21:123–128Google Scholar
  161. Volk RB (2008) A newly developed assay for the quantitative determination of antimicrobial (anticyanobacterial) activity of both hydrophilic and lipophilic test compounds without any restriction. Microbiol Res 163(2):161–167PubMedCrossRefPubMedCentralGoogle Scholar
  162. Vorburger SA, Hunt KK (2002) Adenoviral gene therapy. Oncologist 7:46–59PubMedCrossRefPubMedCentralGoogle Scholar
  163. Wallaart TE, Pras N, Beekman AC, Quax WJ (2000) Seasonal variation of artemisinin and its biosynthetic precursors in plants of Artemisia annua of different geographical origin: proof for the existence of chemotypes. Planta Med 66:57–62PubMedCrossRefPubMedCentralGoogle Scholar
  164. Walmsley AM, Arntzen CJ (2000) Plants for delivery of edible vaccines. Curr Opin Biotechnol 11:126–129PubMedCrossRefPubMedCentralGoogle Scholar
  165. Wink M (ed) (1999) Functions of plant secondary metabolites and their exploitation in biotechnology. In: Annual plant reviews, vol 3. CRC Press, Sheffield Academic Press, New York, pp 362Google Scholar
  166. Young VR (1994) Adult amino acid requirements: the case for a major revision in current recommendations. J Nutr 124(8 Suppl):1517S–1523SPubMedCrossRefPubMedCentralGoogle Scholar
  167. Young VR, Ajami AM (2001) Glutamine: the emperor or his clothes? J Nutr 131(9 Suppl):2449S–2459SPubMedCrossRefPubMedCentralGoogle Scholar
  168. Young VR, Pellett PL (1994) Plant proteins in relation to human protein and amino acid nutrition. Am J Clin Nutr 59(5 Suppl):1203S–1212SPubMedCrossRefPubMedCentralGoogle Scholar
  169. Zhang L, Gasper WA, Stass SA, Ioffe OB, Davis MA, Mixson AJ (2002) Angiogenic inhibition mediated by a DNAzyme that target vascular endothelial growth factor receptor 2. Cancer Res 62:5463–5469PubMedPubMedCentralGoogle Scholar
  170. Zhang XX, Li CJ, Nan ZB (2011) Effects of salt and drought stress on alkaloid production in endophyte-infected drunken horse grass (Achnatherum inebrians). Biochem Syst Ecol 39:471–476CrossRefGoogle Scholar
  171. Zidorn C, Stuppner H (2001) Evaluation of chemosystematic characters in the genus Leontodon. Taxon 50:115–133CrossRefGoogle Scholar
  172. Zobayed SMA, Afreen F, Kozai T (2005) Temperature stress can alter the photosynthetic efficiency and secondary metabolite concentrations in St. John’s Wort. Plant Physiol Biochem 43:977–984PubMedCrossRefPubMedCentralGoogle Scholar
  173. Zongyan C, Na G, Yanzhong C, Jinjie Z, Yongming L, Le Z (2014) Investigation and assessment of polycyclic aromatic hydrocarbons contamination in Chinese herbal medicines. Environ Chem 33(5):844–849Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of BotanyChittagong UniversityChittagongBangladesh

Personalised recommendations