The Ecology of Pathogen Spillover and Disease Emergence at the Human-Wildlife-Environment Interface

  • Kathleen A. AlexanderEmail author
  • Colin J. Carlson
  • Bryan L. Lewis
  • Wayne M. Getz
  • Madhav V. Marathe
  • Stephen G. Eubank
  • Claire E. Sanderson
  • Jason K. Blackburn
Part of the Advances in Environmental Microbiology book series (AEM, volume 5)


Novel diseases are increasingly emerging into human populations through the complex—and often, unseen—stepwise process of spillover from a combination of wildlife, livestock, vectors, and the abiotic environment. Characterizing and modeling the spillover interface are a key part of how eco-epidemiologists respond to the growing global burden of emerging infectious diseases; but the diversity of pathogen life cycles and transmission modes poses a complex challenge for ecologists and clinicians alike. We review our current understanding of the spillover process and present a framework that relates spillover rates and human-to-human transmissibility to the basic reproduction number (R0). Using pathogens that exemplify important transmission pathways (anthrax, Ebola, influenza, and Zika), we illustrate key aspects of the spillover interface and discuss implications to public health and management of emerging infectious disease.


Eco-epidemiology Spillover Emerging diseases Anthrax Ebola Vector Host 


Compliance with Ethical Standards


This work has been partially supported by NSF CNH 114953, NSF CNH 1518486, and NSF EEID 1518663 (KAA), NSF HSD Grant SES-0729441, NIH MI- DAS project 2U01GM070694-7, NSF PetaApps Grant OCI-0904844, DTRA15R&D Grant HDTRA1-0901-0017, DTRA CNIMS Grant HDTRA1-07-C-0113 (MM,SE), NSF EEID 1617982 (WMG), and NIH 1R01GM117617-01 (JKB). We thank B. Singer for comments on this chapter.

Conflict of Interest

All authors declare they have no conflict of interest.

Ethics Approval

This article does not contain any studies with human participants or animals performed by any of the authors.


  1. Alexander KA, McNutt JW (2010) Human behavior influences infectious disease emergence at the human–animal interface. Front Ecol Environ 8(10):522–526CrossRefGoogle Scholar
  2. Alexander KA, MacLachlan NJ, Kat PW et al (1994) Evidence of natural blue-tongue virus infection among African carnivores. Am J Trop Med Hyg 51(5):568–576CrossRefPubMedGoogle Scholar
  3. Alexander K, Kat P, House J et al (1995) African horse sickness and African carnivores. Vet Microbiol 47(1–2):133–140CrossRefPubMedGoogle Scholar
  4. Alexander KA, Blackburn JK, Vandewalle ME et al (2012a) Buffalo, bush meat, and the zoonotic threat of brucellosis in Botswana. PLoS One 7(3):e32, 842CrossRefGoogle Scholar
  5. Alexander KA, Lewis BL, Marathe M et al (2012b) Modeling of wildlife-associated zoonoses: applications and caveats. Vector Borne Zoonotic Dis 12(12):1005–1018CrossRefPubMedPubMedCentralGoogle Scholar
  6. Alexander KA, Sanderson CE, Marathe M et al (2015) What factors might have led to the emergence of Ebola in West Africa? PLoS Negl Trop Dis 9(6):e0003, 652CrossRefGoogle Scholar
  7. Ali S, Keil R (2006) Global cities and the spread of infectious disease: the case of severe acute respiratory syndrome (SARS) in Toronto, Canada. Urban Stud 43(3):491CrossRefGoogle Scholar
  8. Allan B, Keesing F, Ostfeld R (2003) Effect of forest fragmentation on Lyme disease risk. Conserv Biol 17(1):267–272CrossRefGoogle Scholar
  9. Anishchenko M, Bowen R, Paessler S et al (2006) Venezuelan encephalitis emergence mediated by a phylogenetically predicted viral mutation. Proc Natl Acad Sci U S A 103(13):4994CrossRefPubMedPubMedCentralGoogle Scholar
  10. Antia R, Regoes RR, Koella JC et al (2003) The role of evolution in the emergence of infectious diseases. Nature 426(6967):658CrossRefPubMedGoogle Scholar
  11. Blackburn J (2006) Evaluating the spatial ecology of anthrax in North America: Examining epidemiological components across multiple geographic scales using a GIS-based approach [Doctoral dissertation]. Louisiana State University, Baton RougeGoogle Scholar
  12. Blackburn JK (2010) Integrating geographic information systems and ecological niche modeling into disease ecology: a case study of bacillus anthracis in the United States and Mexico. In: O’Connell KP, Skowronski EW, Bakanidze L, Sulakvelidze A (eds) Emerging and endemic pathogens. Springer, Dordrecht, pp 59–88CrossRefGoogle Scholar
  13. Blackburn JK, McNyset KM, Curtis A et al (2007) Modeling the geographic distribution of bacillus anthracis, the causative agent of anthrax disease, for the contiguous united states using predictive ecologic niche modeling. Am J Trop Med Hyg 77(6):1103–1110PubMedCrossRefGoogle Scholar
  14. Blackburn JK, Curtis A, Hadfield TL et al (2010) Confirmation of Bacillus anthracis from flesh-eating flies collected during a West Texas anthrax season. J Wildl Dis 46(3):918–922CrossRefPubMedGoogle Scholar
  15. Blackburn JK, Hadfield TL, Curtis AJ et al (2014a) Spatial and temporal patterns of anthrax in white-tailed deer, Odocoileus virginianus, and hematophagous flies in West Texas during the summertime anthrax risk period. Ann Am Assoc Geogr 104(5):939–958CrossRefGoogle Scholar
  16. Blackburn JK, Van Ert M, Mullins JC et al (2014b) The necrophagous fly anthrax transmission pathway: empirical and genetic evidence from wildlife epizootics. Vector Borne Zoonotic Dis 14(8):576–583CrossRefPubMedGoogle Scholar
  17. Braack L, De Vos V (1990) Feeding habits and flight range of blow-flies (Chrysomyia spp.) in relation to anthrax transmission in the Kruger National Park, South Africa. Onderstepoort J Vet Res 57(2):141–142PubMedGoogle Scholar
  18. Brown C (2004) Emerging zoonoses and pathogens of public health significance – an overview. Revue Scientifique et Technique-Office International des Epizooties 23(2):435–442CrossRefGoogle Scholar
  19. Camacho A, Kucharski A, Funk S et al (2014) Potential for large outbreaks of Ebola virus disease. Epidemics 9:70–78CrossRefPubMedPubMedCentralGoogle Scholar
  20. Cherkasskiy B (1999) A national register of historic and contemporary anthrax foci. J Appl Microbiol 87(2):192–195CrossRefPubMedGoogle Scholar
  21. Childs J (2004) Zoonotic viruses of wildlife: hither from yon. In: Emergence and control of zoonotic viral encephalitides. Springer, BerlinGoogle Scholar
  22. Childs JE, Richt JA, Mackenzie JS (2007) Introduction: conceptualizing and partitioning the emergence process of zoonotic viruses from wildlife to humans. In: Childs JE, Mackenzie JS, Richt JA (eds) Wildlife and emerging zoonotic diseases: the biology, circumstances and con sequences of cross-species transmission. Springer, Heidelberg, pp 1–31CrossRefGoogle Scholar
  23. Chuck S, Sande M (1989) Infections with Cryptococcus neoformans in the acquired immunodeficiency syndrome. N Engl J Med 321(12):794–799CrossRefPubMedGoogle Scholar
  24. Cox-Singh J, Singh B (2008) Knowlesi malaria: newly emergent and of public health importance? Trends Parasitol 24(9):406–410CrossRefPubMedPubMedCentralGoogle Scholar
  25. Daszak P, Cunningham AA, Hyatt AD (2000) Emerging infectious diseases of wildlife–threats to biodiversity and human health. Science 287(5452):443–449CrossRefGoogle Scholar
  26. Dearing MD, Dizney L (2010) Ecology of hantavirus in a changing world. Ann N Y Acad Sci 1195(1):99–112CrossRefPubMedGoogle Scholar
  27. Diekmann O, Heesterbeek JAP, Metz JA (1990) On the definition and the computation of the basic reproduction ratio r0 in models for infectious diseases in heterogeneous populations. J Math Biol 28(4):365–382CrossRefPubMedGoogle Scholar
  28. Dobson A (2004) Population dynamics of pathogens with multiple host species. Am Nat 164(S5):S64–S78CrossRefPubMedGoogle Scholar
  29. Dobson AP (2005) What links bats to emerging infectious diseases? Science 310(5748):628CrossRefPubMedGoogle Scholar
  30. Donnelly C, Woodroffe R, Cox D et al (2003) Impact of localized badger culling on tuberculosis incidence in British cattle. Nature 426(6968):834–837CrossRefPubMedGoogle Scholar
  31. Dragon DC, Rennie RP (1995) The ecology of anthrax spores: tough but not invincible. Can Vet J 36(5):295PubMedPubMedCentralGoogle Scholar
  32. Dragon D, Elkin B, Nishi J et al (1999) A review of anthrax in Canada and implications for research on the disease in northern bison. J Appl Microbiol 87(2):208–213CrossRefPubMedGoogle Scholar
  33. Duffy S, Shackelton LA, Holmes EC (2008) Rates of evolutionary change in viruses: patterns and determinants. Nat Rev Genet 9(4):267CrossRefPubMedGoogle Scholar
  34. Ferrari N, Cattadori I, Rizzoli A et al (2009) Heligmosomoides polygyrus reduces infestation of Ixodes ricinus in free-living yellow-necked mice, Apodemus flavicollis. Parasitology 136:305–316CrossRefPubMedGoogle Scholar
  35. Fèvre E, Picozzi K, Fyfe J et al (2005) A burgeoning epidemic of sleeping sickness in Uganda. Lancet 366(9487):745–747CrossRefPubMedGoogle Scholar
  36. Fichet-Calvet E, Lecompte E, Koivogui L, Soropogui B, Doré A, Kourouma F, Sylla O, Daffis S, Koulémou K, Ter Meulen J (2007) Fluctuation of abundance and Lassa virus prevalence in Mastomys natalensis in Guinea, West Africa. Vector-Borne Zoonotic Dis 7(2):119–128CrossRefPubMedGoogle Scholar
  37. Getz WM, Pickering J (1983) Epidemic models: thresholds and population regulation. Am Nat 121:892–898CrossRefGoogle Scholar
  38. Getz WM, Gonzalez J-P, Salter R et al (2015) Tactics and strategies for managing Ebola outbreaks and the salience of immunization. Comput Math Methods Med 2015:736507CrossRefPubMedPubMedCentralGoogle Scholar
  39. Georges AJ, Leroy EM, Renaut AA et al (1999) Ebola hemorrhagic fever outbreaks in Gabon, 1994–1997: epidemiologic and health control issues. J Infect Dis 179:S65–S75CrossRefPubMedGoogle Scholar
  40. Gombe N, Nkomo B, Chadambuka A et al (2010) Risk factors for contracting anthrax in Kuwirirana ward, Gokwe North, Zimbabwe. Afr Health Sci 10:159–164PubMedPubMedCentralGoogle Scholar
  41. Griffin D, Donaldson K, Paul J et al (2003) Pathogenic human viruses in coastal waters. Clin Microbiol Rev 16(1):129CrossRefPubMedPubMedCentralGoogle Scholar
  42. Halperin DT (1999) Heterosexual anal intercourse: prevalence, cultural factors, and HIV infection and other health risks, Part I. AIDS Patient Care STDs 13(12):717–730CrossRefPubMedGoogle Scholar
  43. Haydon DT, Cleaveland S, Taylor LH et al (2002) Identifying reservoirs of infection: a conceptual and practical challenge. Emerg Infect Dis 8:1468–1473CrossRefPubMedGoogle Scholar
  44. Heesterbeek J (2002) A brief history of R0 and a recipe for its calculation. Acta Biotheor 50:189–204CrossRefPubMedGoogle Scholar
  45. Heeney JL, Dalgleish AG, Weiss RA (2006) Origins of HIV and the evolution of resistance to AIDS. Science 313:462CrossRefPubMedGoogle Scholar
  46. Hooper P, Zaki S, Daniels P et al (2001) Comparative pathology of the diseases caused by Hendra and Nipah viruses. Microbes Infect 3(4):315–322CrossRefPubMedGoogle Scholar
  47. Hudson P, Perkins S, Cattadori I et al (2008) The emergence of wildlife disease and the application of ecology. Princeton University Press, Princeton, NJ, pp 347–367Google Scholar
  48. Hugh-Jones M, Blackburn J (2009) The ecology of Bacillus anthracis. Mol Asp Med 30(6):356–367Google Scholar
  49. Iacono GL, Cunningham AA, Fichet-Calvet E et al (2016) A unified framework for the infection dynamics of zoonotic spillover and spread. PLoS Negl Trop Dis 10:e0004957CrossRefPubMedPubMedCentralGoogle Scholar
  50. Johnson CK, Hitchens PL, Evans TS et al (2015) Spillover and pandemic properties of zoonotic viruses with high host plasticity. Sci Rep 5:14830CrossRefGoogle Scholar
  51. Jones K, Patel N, Levy M et al (2008) Global trends in emerging infectious diseases. Nature 451:990CrossRefPubMedPubMedCentralGoogle Scholar
  52. Keele BF, Van Heuverswyn F, Li Y et al (2006) Chimpanzee reservoirs of pandemic and nonpandemic HIV-1. Science 313:523–526CrossRefPubMedPubMedCentralGoogle Scholar
  53. Kilpatrick AM (2011) Globalization, land use, and the invasion of West Nile virus. Science 334:323–327CrossRefPubMedPubMedCentralGoogle Scholar
  54. Kilpatrick AM, Kramer LD, Jones MJ et al (2006) West Nile virus epidemics in North America are driven by shifts in mosquito feeding behavior. PLoS Biol 4:e82CrossRefPubMedPubMedCentralGoogle Scholar
  55. Kracalik IT, Malania L, Tsertsvadze N et al (2013) Evidence of local persistence of human anthrax in the country of Georgia associated with environmental and anthropogenic factors. PLoS Negl Trop Dis 7(9):e2388CrossRefPubMedPubMedCentralGoogle Scholar
  56. Kracalik I, Abdullayev R, Asadov K et al (2014) Changing patterns of human anthrax in Azerbaijan during the post-soviet and preemptive livestock vaccination eras. PLoS Negl Trop Dis 8:e2985CrossRefPubMedPubMedCentralGoogle Scholar
  57. Kracalik I, Malania L, Imnadze P et al (2015) Human Anthrax transmission at the urban–rural Interface, Georgia. Am J Trop Med Hyg 93:1156–1159CrossRefPubMedPubMedCentralGoogle Scholar
  58. Krishna R, Mohiyuden S et al (1958) Tabanus flies as transmitters of anthrax-a field experience. Indian Vet J 38(7):348–353Google Scholar
  59. Lagace-Wiens PR, Rubinstein E, Gumel A (2010) Influenza epidemiology past, present, and future. Crit Care Med 38:e1–e9CrossRefGoogle Scholar
  60. Lemey P, Pybus OG, Wang B et al (2003) Tracing the origin and history of the HIV-2 epidemic. Proc Natl Acad Sci U S A 100(11):6588–6592CrossRefPubMedPubMedCentralGoogle Scholar
  61. Leroy EM, Epelboin A, Mondonge V et al (2009) Human Ebola outbreak resulting from direct exposure to fruit bats in Luebo, Democratic Republic of Congo, 2007. Vector Borne Zoonotic Dis 9(6):723–728CrossRefPubMedGoogle Scholar
  62. Lloyd-Smith JO, Cross PC, Briggs CJ et al (2005) Should we expect population thresholds for wildlife disease? Trends Ecol Evol 20(9):511–519CrossRefPubMedGoogle Scholar
  63. Lloyd-Smith JO, George D, Pepin KM et al (2009) Epidemic dynamics at the human-animal interface. Science 326(5958):1362–1367CrossRefPubMedPubMedCentralGoogle Scholar
  64. Lloyd-Smith JO, Funk S, McLean AR et al (2015) Nine challenges in modelling the emergence of novel pathogens. Epidemics 10:35–39CrossRefPubMedPubMedCentralGoogle Scholar
  65. McCormack RK, Allen LJ (2007) Disease emergence in multi-host epidemic models. Math Med Biol 24(1):17–34CrossRefPubMedGoogle Scholar
  66. Morris LR, Proffitt KM, Asher V et al (2016) Elk resource selection and implications for anthrax management in Montana. J Wildl Manag 80(2):235–244CrossRefGoogle Scholar
  67. Olival KJ, Hosseini PR, Zambrana-Torrelio C et al (2017) Host and viral traits predict zoonotic spillover from mammals. Nature 546(7660):646–650CrossRefPubMedPubMedCentralGoogle Scholar
  68. Olsen CW (2002) The emergence of novel swine influenza viruses in North America. Virus Res 85(2):199–210CrossRefPubMedGoogle Scholar
  69. Olson PE, Hames C, Benenson A et al (1996) The thucydides syndrome: Ebola deja vu? (or Ebola reemergent?). Emerg Infect Dis 2(2):155CrossRefPubMedPubMedCentralGoogle Scholar
  70. Orlandi P, Chu D, Bier J, Jackson G (2002) Parasites and the food supply. Food Technol Champaign Then Chicago 56(4):72–79Google Scholar
  71. Papagrigorakis MJ, Yapijakis C, Synodinos PN et al (2006) DNA examination of ancient dental pulp incriminates typhoid fever as a probable cause of the plague of Athens. Int J Infect Dis 10(3):206–214CrossRefPubMedGoogle Scholar
  72. Parrish CR, Holmes EC, Morens DM et al (2008) Cross-species virus transmission and the emergence of new epidemic diseases. Microbiol Mol Biol Rev 72(3):457–470CrossRefPubMedPubMedCentralGoogle Scholar
  73. Pepin KM, Lass S, Pulliam JRC et al (2010) Identifying genetic markers of adaptation for surveillance of viral host jumps. Nat Rev Microbiol 8(11):802–813CrossRefPubMedGoogle Scholar
  74. Petersen LR, Brault AC, Nasci RS (2013) West Nile virus: review of the literature. JAMA 310(3):308–315CrossRefPubMedPubMedCentralGoogle Scholar
  75. Pinzon JE, Wilson JM, Tucker CJ et al (2004) Trigger events: enviroclimatic coupling of Ebola hemorrhagic fever outbreaks. Am J Trop Med Hyg 71(5):664–674PubMedCrossRefGoogle Scholar
  76. Ray TK, Hutin YJ, Murhekar MV (2009) Cutaneous anthrax, West Bengal, India, 2007. Emerg Infect Dis 15(3):497CrossRefPubMedPubMedCentralGoogle Scholar
  77. Redding DW, Moses LM, Cunningham AA et al (2016) Environmental-mechanistic modelling of the impact of global change on human zoonotic disease emergence: a case study of lassa fever. Methods Ecol Evol 7(6):646–655CrossRefGoogle Scholar
  78. Reis RB, Ribeiro GS, Felzemburgh RD et al (2008) Impact of environment and social gradient on leptospira infection in urban slums. PLoS Negl Trop Dis 2(4):e228CrossRefPubMedPubMedCentralGoogle Scholar
  79. Rigaud T, Perrot-Minnot MJ, Brown MJ (2010) Parasite and host assemblages: embracing the reality will improve our knowledge of parasite transmission and virulence. Philos Trans R Soc Lond B Biol Sci 277(1701):3693–3702CrossRefGoogle Scholar
  80. Rimoin AW, Mulembakani PM, Johnston SC et al (2010) Major increase in human monkeypox incidence 30 years after smallpox vaccination campaigns cease in the democratic republic of congo. Proc Natl Acad Sci U S A 107(37):16,262–16,267CrossRefGoogle Scholar
  81. Smith RD (2006) Responding to global infectious disease outbreaks: lessons from sars on the role of risk perception, communication and management. Soc Sci Med 63(12):3113–3123CrossRefPubMedGoogle Scholar
  82. Smith GJ, Bahl J, Vijaykrishna D, Zhang J et al (2009) Dating the emergence of pandemic influenza viruses. Proc Natl Acad Sci U S A 106(28):11,709–11,712CrossRefGoogle Scholar
  83. Song H, Tu C, Zhang G et al (2005) Cross-host evolution of severe acute respiratory syndrome coronavirus in palm civet and human. Proc Natl Acad Sci U S A 102(7):2430CrossRefPubMedPubMedCentralGoogle Scholar
  84. Stapp P, Antolin MF, Ball M (2004) Patterns of extinction in prairie dog metapopulations: plague outbreaks follow el nino events. Front Ecol Environ 2(5):235–240Google Scholar
  85. Tack AJ, Thrall PH, Barrett LG et al (2012) Variation in infectivity and aggressiveness in space and time in wild host–pathogen systems: causes and consequences. J Evol Biol 25(10):1918–1936CrossRefPubMedPubMedCentralGoogle Scholar
  86. Taubenberger JK, Morens DM (2006) Influenza en 1918: La madre de todas las pandemias. Revista Biomedica 17(1):69–79Google Scholar
  87. Turnbull PC, World Health Organization et al (1998) Guidelines for the surveillance and control of anthrax in humans and animals. World Health Organization, Department of Communicable Diseases Surveillance and Response, GenevaGoogle Scholar
  88. Webster R, Shortridge K, Kawaoka Y (1997) Influenza: interspecies transmission and emergence of new pandemics. FEMS Immunol Med Microbiol 18(4):275–279CrossRefPubMedGoogle Scholar
  89. Wells R, Young J, Williams R et al (1997) Hantavirus transmission in the United States. Emerg Infect Dis 3(3):361CrossRefPubMedPubMedCentralGoogle Scholar
  90. Wolfe ND, Dunavan CP, Diamond J (2007) Origins of major human infectious diseases. Nature 447(7142):279CrossRefPubMedGoogle Scholar
  91. Woods CW, Ospanov K, Myrzabekov A et al (2004) Risk factors for human anthrax among contacts of anthrax-infected livestock in Kazakhstan. Am J Trop Med Hyg 71(1):48–52PubMedCrossRefGoogle Scholar
  92. Yakob L, Bonsall MB, Yan G (2010) Modelling knowlesi malaria transmission in humans: vector preference and host competence. Malaria J 9(1):329CrossRefGoogle Scholar
  93. Yang Y, Halloran ME, Sugimoto JD et al (2007) Detecting human-to-human transmission of avian influenza a (h5n1). Emerg Infect Dis 13(9):1348CrossRefPubMedPubMedCentralGoogle Scholar
  94. Zinsstag J, Roth F, Orkhon D, Chimed-Ochir G et al (2005) A model of animal–human brucellosis transmission in mongolia. Prev Vet Med 69(1–2):77–95CrossRefPubMedGoogle Scholar
  95. Zinsstag J, Dürr S, Penny M et al (2009) Transmission dynamics and economics of rabies control in dogs and humans in an African city. Proc Natl Acad Sci U S A 106(35):14996–15001CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Kathleen A. Alexander
    • 1
    Email author
  • Colin J. Carlson
    • 2
  • Bryan L. Lewis
    • 3
  • Wayne M. Getz
    • 2
  • Madhav V. Marathe
    • 4
  • Stephen G. Eubank
    • 4
  • Claire E. Sanderson
    • 1
  • Jason K. Blackburn
    • 5
  1. 1.Department of Fish and Wildlife ConservationVirginia TechBlacksburgUSA
  2. 2.Department Environmental Science, Policy and ManagementUC BerkeleyBerkeleyUSA
  3. 3.Department of Population Health Sciences, Department of Computer ScienceBiocomplexity Institute, Virginia TechBlacksburgUSA
  4. 4.Network Dynamics and Simulation Sciences LaboratoryBiocomplexity Institute, Virginia TechBlacksburgUSA
  5. 5.Department of GeographyUniversity of FloridaGainesvilleUSA

Personalised recommendations