Ethical Aspects of Animal Biotechnology

  • Dirk LanzerathEmail author


An ethical perspective on a field like the application of genetic engineering on animals in farming and food production is much more than mere technology assessments of risks and benefits. Rather ethics must approach the relationship between principles and practical moral challenges as a kind of reflective equilibrium. Against this background, applied ethics is not merely the application of principles to practice but a process in which practical experiences reciprocally influence the content and interpretation of ethical principles. Ethical theory learns from moral practice. Given that the interventions of biotechnology and genetic engineering principally affect the existence of nonhuman animals, ethics not only addresses questions relating to human health or social cooperation but takes a particularly fundamental interest in the ever-changing normative relationship between humans and animals as well as humans and nature. Therefore in this paper the analysis of the ethical challenges posed by biotechnology applied on animals reveals several problem areas that must be considered in developing ethical criteria for the investigation of biogenetic activities. Firstly, the paper will address the basic relationship of humankind and its technologies to nature (Chap.  1) in addition to the development of relevant evaluative criteria in environmental ethics and the ethics of nature (Chap.  2). The latter aid in the normative evaluation of technologies when weighing up which ends and means can be considered justified in relation to the goods a society recognises (Chap.  3). Against the background of biotechnological contributions to food production, the anthropological question as to what role food plays in a current culture and lifestyle—and what kind of change that culture and lifestyle might admit—will be analysed (Chap.  4). Yet the evaluation of biotechnology, to the extent that it is used on animals, covers more than just the well-being of humans and society; transgenic animals also pose a great challenge to animal protection and welfare (Chap.  5). Finally the paper discusses that a society dealing with new technologies must constantly consider what form risk assessment should take and what kind of tolerance for environmental, health, and economic risks that implies (Chap.  6). Processes that advance sustainability, justice, food quality, and animal welfare alike should be placed at the centre of modern agriculture and food production. From an ethical perspective, the gene technological and biotechnological production of animals must be measured according to the extent of its contribution to these complex and highly relevant goals.


Animal ethics Animal welfare Ethics nature Precautionary principle Ethics of nature Food ethics Environmental ethics 


  1. Ahteensuu M (2008) The precautionary principle and the risks of modern agri-biotechnology. In: Launis V, Räikkä J (eds) Genetic democracy. Philosophical perspectives, vol 37. Springer, Dordrecht, pp 75–92Google Scholar
  2. Ammann K, Jacot Y, Simonsen V, Kjellsson G (eds) (1999) Methods for risk assessment of transgenic plants, vol 3. Birkhäuser, BaselGoogle Scholar
  3. Andorno R (2004) The precautionary principle. A new legal standard for a technological age. J Int Biotechnol Law 1:11–19CrossRefGoogle Scholar
  4. Attfield R (2008) The ethics of the environment. (The International Library of Essays in Public and Professional Ethics series). Ashgate, AldershotGoogle Scholar
  5. Baldwin G, Bayer T, Dickinson R, Ellis T, Freemont PS, Kitney RI, Polizzi K, Stan G-B (eds) (2012) Synthetic biology. A Primer, LondonGoogle Scholar
  6. Beauchamp TL, Frey RG (eds) (2013) The Oxford handbook of animal ethics. Oxford Univ. Press, OxfordGoogle Scholar
  7. Beckerman W (2006) Ein Mangel an Vernunft. Nachhaltige Entwicklung und Wirtschaftswachstum. Liberal Verlag, BerlinGoogle Scholar
  8. Brønstad A, Berg A-GT (2011) The role of organizational culture in compliance with the principles of the 3Rs. Lab Anim 40(1):22–26CrossRefGoogle Scholar
  9. Buck V (2007) Who will start the 3Rs ball rolling for animal welfare? [letter]. Nature 446(7138):856CrossRefPubMedGoogle Scholar
  10. Bütschi D, Gram S, Haugen JM (eds) (2009) Genetically modified plants and foods. Challenges and future issues in Europe. Final report. EPTA, BerlinGoogle Scholar
  11. Cottrell S, Jensen JL, PeckEmail SL (2014) Resuscitation and resurrection: the ethics of cloning cheetahs, mammoths, and Neanderthals. Life Sci Soc Policy 10:3CrossRefGoogle Scholar
  12. Deblonde M (2010) Responsible agro-food biotechnology. Precaution as public reflexivity and ongoing engagement in the service of sustainable development. In: Gottwald F-T, Ingensiep HW, Meinhardt M (eds) Food ethics. Springer, New York, pp 67–85CrossRefGoogle Scholar
  13. van den Daele W (ed) (1996) Grüne Gentechnik im Widerstreit: Modell einer partizipativen Technikfolgenabschätzung zum Einsatz transgener herbizidresistenter Pflanzen. Weinheim, VCHGoogle Scholar
  14. van den Daele W (2001) Zur Reichweite des Vorsorgeprinzips – rechtliche und politische Perspektiven. In: Lege J (Hg.): Gentechnik im nicht-menschlichen Bereich – was kann und was sollte das Recht regeln? Arno Spitz GmbH, Berlin. pp 101–125Google Scholar
  15. van den Daele W (2007) Legal framework and political strategy in dealing with the risks of new technology. The two faces of the precautionary principle. In: Somsen H (ed) The regulatory challenge of biotechnology. Human genetics, food and patents. Cheltenham, Edward Elgar, pp 118–138Google Scholar
  16. Falkner R (ed) (2007) The international politics of genetically modified food. Diplomacy, trade and law. Palgrave Macmillan, BasingstokeGoogle Scholar
  17. Hager FP, Gregory T, Maierù A, Stabile G, Kaulbach F (1984) Natur. In: Ritter J, Gründer K (eds) Historisches Wörterbuch der Philosophie, vol 6. Schwabe, Basel, pp 421–478Google Scholar
  18. Harremoës P, Gee D, MacGarvin M, Stirling A, Keys J, Wynne B, Vaz SG (eds) (2002) The precautionary principle in the 20th century: late lessons from early warnings. Earthscan, LondonGoogle Scholar
  19. Höffe O (1993) Moral als Preis der Moderne. Frankfurt am Main, SuhrkampGoogle Scholar
  20. Holt WV, Pickard AR, Prather RS (2004) Wildlife conservation and reproductive cloning. Reproduction 127:317–324CrossRefPubMedGoogle Scholar
  21. Honnefelder L (1994) Elemente einer philosophischen Anthropologie. In: Honnefelder L, Rager G (eds) Ärztliches Urteilen und Handeln: Zur Grundlegung einer medizinischen Ethik. Insel, Frankfurt am MainGoogle Scholar
  22. Honnefelder L (2011) Welche Natur sollen wir schützen? Berlin University Press, BerlinCrossRefGoogle Scholar
  23. Honnefelder L, Lanzerath D, Hillebrand I (1999) Klonen von Tieren: Kriterien einer ethischen Urteilsbildung. Jahr Wiss Ethik 4Google Scholar
  24. Jonas H (1984) The imperative of responsibility: in search of an ethics for the technological age. Trans. Hans Jonas and David Herr. University of Chicago Press, Chicago and LondonGoogle Scholar
  25. Kabasenche WP, O'Rourke M, Slater MH (eds) (2012) The environment. Philosophy, science, and ethics (Topics in contemporary philosophy). MIT Press, Cambridge, MAGoogle Scholar
  26. Kertscher J, Müller J (eds) (2017) Praxis und ‘zweite Natur’: Begründungsfiguren normativer Wirklichkeit in der Diskussion. Mentis, PaderbornGoogle Scholar
  27. Kjellsson G, Simonsen V, Ammann K (eds) (1997) Methods for risk assessment of transgenic plants, vol 2. Birkhäuser, BaselGoogle Scholar
  28. Lanzerath D (1998) Natürlichkeit der Person und mechanistisches Weltbild. In: Dreyer M, Fleischhauer K (eds) Natur und Person im ethischen Disput. Alber, Freiburg im Breisgau, pp 181–204Google Scholar
  29. Lanzerath D (2000) Krankheit und ärztliches Handeln: Zur Funktion des Krankheitsbegriffs in der medizinischen Ethik. Freiburg im Breisgau, AlberGoogle Scholar
  30. Lanzerath D (2014a) The use of genetic knowledge: ethical problems. In: Lanzerath D, Rietschel M et al (eds) Incidental findings. Scientific, legal and ethical issues. Ärzte-Verlag, Köln, pp 93–108Google Scholar
  31. Lanzerath D (2014b) Biodiversity as an ethical concept. In: Lanzerath D/Friele M (eds) Concepts and values in biodiversity (Routledge biodiversity politics and management series). Routledge: Abingdon, NY, pp 1–19CrossRefGoogle Scholar
  32. Lévi-Strauss C (1983) The raw and the cooked. Vol 1 of mythologiques. Trans. John and Doreen Weightman. University of Chicago Press, ChicagoGoogle Scholar
  33. Lustig BA, Brody BA, McKenny GP (eds) (2008) Altering nature, vol 1. Concepts of "nature" and "the natural" in biotechnology debates (Philosophy and medicine 97). Springer, DordrechtGoogle Scholar
  34. McDowell J (1996) Mind and world. Harvard University Press, CambridgeGoogle Scholar
  35. Mepham B (2008) Risk, precaution and trust. In: Mepham B (ed) Bioethics: an introduction for the biosciences, 2nd edn. Oxford University Press, Oxford, pp 327–349Google Scholar
  36. Mittelstraß J (2003) The concept of nature. Historical and epistemological aspects. In: Ehlers E, Gethmann CF (eds) Environment across cultures. Springer, Berlin, pp 29–35CrossRefGoogle Scholar
  37. Munthe C (2011) The price of precaution and the ethics of risk (The international library of ethics, law and technology 6). Springer, DordrechtGoogle Scholar
  38. Nuffield Council on Bioethics (2016) Genome editing. An ethical review. Nuffield Council, LondonGoogle Scholar
  39. Ormandy EH, Dale J, Griffin G (2011) Genetic engineering of animals: ethical issues, including welfare concerns. Can Vet J 52(5):544–550PubMedPubMedCentralGoogle Scholar
  40. Pielke R Jr (2002) Is the precautionary principle a useful guide to action? Review of the precautionary principle in the 20th century: late lessons from early warnings, ed. Poul Harremoës, David Gee, Malcolm MacGarvin, Andy Stirling, Jane Keys, Brian Wynne, and Sofia Guedes Vaz. Nature 419:433–434CrossRefGoogle Scholar
  41. Pinstrup-Andersen P, Schiøler E (eds) (2000) Seeds of contention: world hunger and the global controversy over GM crops (International Food Policy Research Institute). John Hopkins Univ Press, BaltimoreGoogle Scholar
  42. Plessner H (1981) Die Stufen des Organischen und der Mensch. Vol 4 of Gesammelte Schriften. Frankfurt am Main, SuhrkampGoogle Scholar
  43. Rawls J (1951) Outline of a decision procedure for ethics. Philos Rev 60(2):177–197CrossRefGoogle Scholar
  44. Regan T (2004) The case for animal rights, 3rd edn. University of California Press, BerkleyGoogle Scholar
  45. Rio Declaration on Environment and Development of the United Nations Conference on Environment and Development (UNCED) (1992) UN Doc. A/CONF.151/26 (vol I); 31 ILM 874 (1992)Google Scholar
  46. Rippe K-P (2001) Vorsorge als umweltethisches Leitprinzip. Bericht der Eidgenössischen Ethikkommission für die Gentechnik im ausserhumanen Bereich. Accessed 28 May 2013Google Scholar
  47. Schäfer L, Ströker E (1993–96) Naturauffassungen in Philosophie, Wissenschaft, Technik. Alber, Freiburg im BreisgauGoogle Scholar
  48. Schmidt M (ed) (2012) Synthetic biology. Industrial and environmental applications. Wiley–Blackwell, WeinheimGoogle Scholar
  49. Serrano L (2007) Synthetic biology: promises and challenges. Mol Syst Biol 3(158):1–5. CrossRefGoogle Scholar
  50. Siep L (1993) Ethische Probleme der Gentechnologie. In: Ach JS, Gaidt A (eds) Herausforderung der Bioethik. Stuttgart-Bad Cannstatt, Frommann-HolzboogGoogle Scholar
  51. Siep L (1998) Bioethik. In: Pieper A, Thurnherr U (eds) Angewandte Ethik: Eine Einführung. Beck, MunichGoogle Scholar
  52. Sturma D (2013) Naturethik und Biodiversität. In: Sturma D/Honnefelder L (eds) Jahrbuch für Wissenschaft und Ethik, Bd 17. de Gruyter, Berlin, pp 141–155Google Scholar
  53. Sturma D, Lanzerath D (eds) (2016) Tiere in der Forschung. Naturwissenschaftliche, rechtliche und ethische Aspekte. (Ethik in den Biowissenschaften - Sachstandsberichte des DRZE, 17), Freiburg i.Br. München, AlberGoogle Scholar
  54. Telugu BP et al. (2016) Genome editing to the rescue: sustainably feeding 10 billion global human population. Natl Inst Biosci J 1.
  55. Thompson PB (2007) Food biotechnology in ethical perspective. (The international library of environmental, agricultural and food ethics 10), 2nd edn. Springer, DordrechtGoogle Scholar
  56. Twine R (2015) Animals as biotechnology. Ethics, sustainability and critical animal studies. Earthscan, AbingdonGoogle Scholar
  57. Weirich P (ed) (2007) Labeling genetically modified food. The philosophical and legal debate. Oxford Univ. Press, OxfordGoogle Scholar
  58. West C (2006) Economic and ethics in the genetic engineering of animals. Harvard J Law Technol 19:413–442Google Scholar
  59. Wohlers AE (2010) Regulating genetically modified food. Policy trajectories, political culture, and risk perceptions in the U.S., Canada, and EU. Politics Life Sci 29(2):17–39CrossRefPubMedGoogle Scholar
  60. Wray B (2016) Public engagement in synthetic biology. "experts", "diplomats" and the creativity of "idiots". In: Hagen K (ed) Ambivalences of creating life. Societal and philosophical dimensions of synthetic biology, Cham, Heidelberg, pp 177–197Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Deutsches Referenzzentrum für Ethik in den Biowissenschaften (DRZE) (German Reference Centre for Ethics in the Life Sciences)University of BonnBonnGermany

Personalised recommendations