Advertisement

Stem Cells and Cell Conversion in Livestock

  • Fulvio Gandolfi
  • Tiziana A. L. Brevini
Chapter

Abstract

The main drive to study stem cells is their possible use as therapeutic agents. Within veterinary medicine, a direct medicinal use of stem cells is reserved to companion species. Domestic ungulates like ruminants and pig are often used for preclinical research.

A stem cell is an unspecialized cell type able to undergo asymmetrical divisions: one cell is identical to its mother; the other begins its transformation toward one or more cell types capable of specific functions.

Physiologically, small populations of stem cells are present in each organ, and their function is to counteract the physiological wear and tear. These are named organ-specific stem cells and can be isolated from any animal species as well as in humans.

Embryonic stem cells are not a physiological cell type and are derived from early embryos or can be generated artificially (induced pluripotent cells) by inducing a somatic cell to overexpress four specific pluripotency-related genes. They can proliferate indefinitely if kept undifferentiated or can give rise to any other cell type when cultured in the appropriate conditions or transplanted back into an embryo. However, as opposed to organ-specific stem cells, pluripotent stem cells have so far been difficult to obtain in any species other than humans and laboratory rodents.

In order to circumvent the lack of pluripotent cells in livestock species as well as their inherent susceptibility to culture-induced alterations and tumorigenic transformation, novel techniques of cell conversions have been developed that work effectively with no species-specific limitations. Epigenetic mechanisms are used to enhance cell plasticity so that the exposure to adequate culture conditions can transform easily accessible dermal fibroblasts into a wide range of different cell types. Their lack of permanent pluripotency makes them promising candidates for safe therapeutic applications in all species including livestock.

Keywords

Stem cell Regenerative medicine Pluripotency Organ-specific Epigenetic modifications Small molecules Cell conversion 

Notes

Acknowledgments

Carraresi Foundation and European Foundation for the Study of Diabetes (EFSD). The authors are members of the COST Actions FA1201 Epiconcept: Epigenetics and Periconception Environment, BM1308 Sharing Advances on Large Animal Models (SALAAM), CM1406 Epigenetic Chemical Biology (EPICHEM), and CA16119 In vitro 3-D total cell guidance and fitness (CellFit). A special thanks to Dr. G. Pennarossa, University of Milan, for the help in the preparation of the text and images.

References

  1. Alberio R, Croxall N, Allegrucci C (2010) Pig epiblast stem cells depend on activin/nodal signaling for pluripotency and self-renewal. Stem Cells Dev 19:1627–1636CrossRefPubMedPubMedCentralGoogle Scholar
  2. Anastasia L, Sampaolesi M, Papini N, Oleari D, Lamorte G, Tringali C, Monti E, Galli D, Tettamanti G, Cossu G, Venerando B (2006) Reversine-treated fibroblasts acquire myogenic competence in vitro and in regenerating skeletal muscle. Cell Death Differ 13:2042–2051CrossRefPubMedGoogle Scholar
  3. Bao S, Tang F, Li X, Hayashi K, Gillich A, Lao K, Surani MA (2009) Epigenetic reversion of post-implantation epiblast to pluripotent embryonic stem cells. Nature 461:1292–1295CrossRefPubMedGoogle Scholar
  4. Bao L, He L, Chen J, Wu Z, Liao J, Rao L, Ren J, Li H, Zhu H, Qian L, Gu Y, Dai H, Xu X, Zhou J, Wang W, Cui C, Xiao L (2011) Reprogramming of ovine adult fibroblasts to pluripotency via drug-inducible expression of defined factors. Cell Res 21:600–608CrossRefPubMedPubMedCentralGoogle Scholar
  5. Berg DK, Smith CS, Pearton DJ, Wells DN, Broadhurst R, Donnison M, Pfeffer PL (2011) Trophectoderm lineage determination in cattle. Dev Cell 20:244–255CrossRefPubMedGoogle Scholar
  6. Brevini TA, Pennarossa G, Attanasio L, Vanelli A, Gasparrini B, Gandolfi F (2010) Culture conditions and signalling networks promoting the establishment of cell lines from parthenogenetic and biparental pig embryos. Stem Cell Rev 6:484–495CrossRefPubMedGoogle Scholar
  7. Brevini TA, Pennarossa G, Rahman MM, Paffoni A, Antonini S, Ragni G, deEguileor M, Tettamanti G, Gandolfi F (2014) Morphological and molecular changes of human granulosa cells exposed to 5-azacytidine and addressed toward muscular differentiation. Stem Cell Rev 10:633CrossRefPubMedPubMedCentralGoogle Scholar
  8. Brevini TA, Pennarossa G, Acocella F, Brizzola S, Zenobi A, Gandolfi F (2016) Epigenetic conversion of adult dog skin fibroblasts into insulin-secreting cells. Vet J 211:52CrossRefPubMedGoogle Scholar
  9. Brons IG, Smithers LE, Trotter MW, Rugg-Gunn P, Sun B, Chuva de Sousa Lopes SM, Howlett SK, Clarkson A, Ahrlund-Richter L, Pedersen RA, Vallier L (2007) Derivation of pluripotent epiblast stem cells from mammalian embryos. Nature 448:191–195CrossRefPubMedGoogle Scholar
  10. Buehr M, Meek S, Blair K, Yang J, Ure J, Silva J (2008) Capture of authentic embryonic stem cells from rat blastocysts. Cell 135:1287–1298CrossRefPubMedGoogle Scholar
  11. Chandrakanthan V, Yeola A, Kwan JC, Oliver RA, Qiao Q, Kang YC, Zarzour P, Beck D, Boelen L, Unnikrishnan A, Villanueva JE, Nunez AC, Knezevic K, Palu C, Nasrallah R, Carnell M, Macmillan A, Whan R, Yu Y, Hardy P, Grey ST, Gladbach A, Delerue F, Ittner L, Mobbs R, Walkley CR, Purton LE, Ward RL, Wong JW, Hesson LB, Walsh W, Pimanda JE (2016) PDGF-AB and 5-Azacytidine induce conversion of somatic cells into tissue-regenerative multipotent stem cells. Proc Natl Acad Sci U S A 113:E2306CrossRefPubMedPubMedCentralGoogle Scholar
  12. Chen S, Zhang Q, Wu X, Schultz PG, Ding S (2004) Dedifferentiation of lineage-committed cells by a small molecule. J Am Chem Soc 126:410–411CrossRefPubMedGoogle Scholar
  13. Chen S, Takanashi S, Zhang Q, Xiong W, Zhu S, Peters EC, Ding S, Schultz PG (2007) Reversine increases the plasticity of lineage-committed mammalian cells. Proc Natl Acad Sci 104:10482–10487CrossRefPubMedGoogle Scholar
  14. Cheng L, Hu W, Qiu B, Zhao J, Yu Y, Guan W, Wang M, Yang W, Pei G (2014) Generation of neural progenitor cells by chemical cocktails and hypoxia. Cell Res 24:665–679CrossRefPubMedPubMedCentralGoogle Scholar
  15. van Eijk MJ, van Rooijen MA, Modina S, Scesi L, Folkers G, van Tol HT, Bevers MM, Fisher SR, Lewin HA, Rakacolli D, Galli C, de Vaureix C, Trounson AO, Mummery CL, Gandolfi F (1999) Molecular cloning, genetic mapping, and developmental expression of bovine POU5F1. Biol Reprod 60:1093–1103CrossRefPubMedGoogle Scholar
  16. Esteban MA, Xu J, Yang J, Peng M, Qin D, Li W, Jiang Z, Chen J, Deng K, Zhong M, Cai J, Lai L, Pei D (2009) Generation of induced pluripotent stem cell lines from Tibetan miniature pig. J Biol Chem 284:17634–17640CrossRefPubMedPubMedCentralGoogle Scholar
  17. Evans MJ, Kaufman MH (1981) Establishment in culture of pluripotential cells from mouse embryos. Nature 292:154–156CrossRefGoogle Scholar
  18. Ezashi T, Telugu BP, Alexenko AP, Sachdev S, Sinha S, Roberts RM (2009) Derivation of induced pluripotent stem cells from pig somatic cells. Proc Natl Acad Sci U S A 106:10993–10998CrossRefPubMedPubMedCentralGoogle Scholar
  19. Gafni O, Weinberger L, Mansour AA, Manor YS, Chomsky E, Ben-Yosef D, Kalma Y, Viukov S, Maza I, Zviran A, Rais Y, Shipony Z, Mukamel Z, Krupalnik V, Zerbib M, Geula S, Caspi I, Schneir D, Shwartz T, Gilad S, Amann-Zalcenstein D, Benjamin S, Amit I, Tanay A, Massarwa R, Novershtern N, Hanna JH (2013) Derivation of novel human ground state naive pluripotent stem cells. Nature 504:282–286CrossRefPubMedGoogle Scholar
  20. Glover TW, Coyle-Morris J, Pearce-Birge L, Berger C, Gemmill RM (1986) DNA demethylation induced by 5-azacytidine does not affect fragile X expression. Am J Hum Genet 38:309–318PubMedPubMedCentralGoogle Scholar
  21. Guo G, Yang J, Nichols J, Hall JS, Eyres I, Mansfield W, Smith A (2009) Klf4 reverts developmentally programmed restriction of ground state pluripotency. Development 136:1063–1069CrossRefPubMedPubMedCentralGoogle Scholar
  22. Hall VJ, Christensen J, Gao Y, Schmidt MH, Hyttel P (2009) Porcine pluripotency cell signaling develops from the inner cell mass to the epiblast during early development. Dev Dyn 238:2014–2024CrossRefPubMedGoogle Scholar
  23. Harris DM, Hazan-Haley I, Coombes K, Bueso-Ramos C, Liu J, Liu Z, Li P, Ravoori M, Abruzzo L, Han L, Singh S, Sun M, Kundra V, Kurzrock R, Estrov Z (2011) Transformation of human mesenchymal cells and skin fibroblasts into hematopoietic cells. PLoS One 6:e21250CrossRefPubMedPubMedCentralGoogle Scholar
  24. Hou P, Li Y, Zhang X, Liu C, Guan J, Li H, Zhao T, Ye J, Yang W, Liu K, Ge J, Xu J, Zhang Q, Zhao Y, Deng H (2013) Pluripotent stem cells induced from mouse somatic cells by small-molecule compounds. Science 341:651–654CrossRefPubMedGoogle Scholar
  25. Huangfu D, Maehr R, Guo W, Eijkelenboom A, Snitow M, Chen AE (2008) Induction of pluripotent stem cells by defined factors is greatly improved by small-molecule compounds. Nat Biotechnol 26:795–797CrossRefPubMedGoogle Scholar
  26. Ichida JK, Blanchard J, Lam K, Son EY, Chung JE, Egli D, Loh KM, Carter AC, Di Giorgio FP, Koszka K, Huangfu D, Akutsu H, Liu DR, Rubin LL, Eggan K (2009) A small-molecule inhibitor of tgf-Beta signaling replaces sox2 in reprogramming by inducing nanog. Cell Stem Cell 5:491–503CrossRefPubMedPubMedCentralGoogle Scholar
  27. Jones PA (1985a) Altering gene expression with 5-azacytidine. Cell 40:485–486CrossRefPubMedPubMedCentralGoogle Scholar
  28. Jones PA (1985b) Effects of 5-azacytidine and its 2′-deoxyderivative on cell differentiation and DNA methylation. Pharmacol Ther 28:17–27CrossRefPubMedPubMedCentralGoogle Scholar
  29. Jones PA, Taylor SM (1981) Hemimethylated duplex DNAs prepared from 5-azacytidine-treated cells. Nucleic Acids Res 9:2933–2947CrossRefPubMedPubMedCentralGoogle Scholar
  30. Jones PA, Taylor SM, Wilson VL (1983) Inhibition of DNA methylation by 5-azacytidine. Recent Results Cancer Res 84:202–211PubMedPubMedCentralGoogle Scholar
  31. Kim D, Kim CH, Moon JI, Chung YG, Chang MY, Han BS, Ko S, Yang E, Cha KY, Lanza R, Kim KS (2009) Generation of human induced pluripotent stem cells by direct delivery of reprogramming proteins. Cell Stem Cell 4:472–476CrossRefPubMedPubMedCentralGoogle Scholar
  32. Koh S, Piedrahita JA (2014) From “ES-like” cells to induced pluripotent stem cells: a historical perspective in domestic animals. Theriogenology 81:103–111CrossRefPubMedGoogle Scholar
  33. Kumar D, Talluri TR, Anand T, Kues WA (2015) Induced pluripotent stem cells: mechanisms, achievements and perspectives in farm animals. World J Stem Cells 7:315–328CrossRefPubMedPubMedCentralGoogle Scholar
  34. Lange-Consiglio A, Corradetti B, Bizzaro D, Magatti M, Ressel L, Tassan S, Parolini O, Cremonesi F (2012) Characterization and potential applications of progenitor-like cells isolated from horse amniotic membrane. J Tissue Eng Regen Med 6:622–635CrossRefPubMedGoogle Scholar
  35. Lange-Consiglio A, Tassan S, Corradetti B, Meucci A, Perego R, Bizzaro D, Cremonesi F (2013) Investigating the efficacy of amnion-derived compared with bone marrow-derived mesenchymal stromal cells in equine tendon and ligament injuries. Cytotherapy 15:1011–1020CrossRefPubMedGoogle Scholar
  36. Li P, Tong C, Mehrian-Shai R, Jia L, Wu N, Yan Y, Maxson RE, Schulze EN, Song H, Hsieh CL, Pera MF, Ying QL (2008) Germline competent embryonic stem cells derived from rat blastocysts. Cell 135:1299–1310CrossRefPubMedPubMedCentralGoogle Scholar
  37. Li Y, Cang M, Lee AS, Zhang K, Liu D (2011a) Reprogramming of sheep fibroblasts into pluripotency under a drug-inducible expression of mouse-derived defined factors. PLoS One 6:e15947CrossRefPubMedPubMedCentralGoogle Scholar
  38. Li Y, Zhang Q, Yin X, Yang W, Du Y, Hou P, Ge J, Liu C, Zhang W, Zhang X, Wu Y, Li H, Liu K, Wu C, Song Z, Zhao Y, Shi Y, Deng H (2011b) Generation of iPSCs from mouse fibroblasts with a single gene, Oct4, and small molecules. Cell Res 21:196–204CrossRefGoogle Scholar
  39. Liu J, Balehosur D, Murray B, Kelly JM, Sumer H, Verma PJ (2012) Generation and characterization of reprogrammed sheep induced pluripotent stem cells. Theriogenology 77(338-346):e331Google Scholar
  40. Manzoni EF, Pennarossa G, deEguileor M, Tettamanti G, Gandolfi F, Brevini TA (2016) 5-azacytidine affects TET2 and histone transcription and reshapes morphology of human skin fibroblasts. Sci Rep 6:37017CrossRefPubMedPubMedCentralGoogle Scholar
  41. Mirakhori F, Zeynali B, Kiani S, Baharvand H (2015) Brief azacytidine step allows the conversion of suspension human fibroblasts into neural progenitor-like cells. Cell J 17:153–158PubMedPubMedCentralGoogle Scholar
  42. Montserrat N, Bahima EG, Batlle L, Hafner S, Rodrigues AM, Gonzalez F, Izpisua Belmonte JC (2011) Generation of pig iPS cells: a model for cell therapy. J Cardiovasc Transl Res 4:121–130CrossRefPubMedGoogle Scholar
  43. Moschidou D, Mukherjee S, Blundell MP, Drews K, Jones GN, Abdulrazzak H, Nowakowska B, Phoolchund A, Lay K, Ramasamy TS, Cananzi M, Nettersheim D, Sullivan M, Frost J, Moore G, Vermeesch JR, Fisk NM, Thrasher AJ, Atala A, Adjaye J, Schorle H, De Coppi P, Guillot PV (2012) Valproic acid confers functional pluripotency to human amniotic fluid stem cells in a transgene-free approach. Mol Ther 20:1953–1967CrossRefPubMedPubMedCentralGoogle Scholar
  44. Nagy K, Sung HK, Zhang P, Laflamme S, Vincent P, Agha-Mohammadi S, Woltjen K, Monetti C, Michael IP, Smith LC, Nagy A (2011) Induced pluripotent stem cell lines derived from equine fibroblasts. Stem Cell Rev 7:693CrossRefPubMedPubMedCentralGoogle Scholar
  45. Nichols J, Smith A (2009) Naive and primed pluripotent states. Cell Stem Cell 4:487–492CrossRefPubMedGoogle Scholar
  46. Nichols J, Smith A (2011) The origin and identity of embryonic stem cells. Development 138:3–8CrossRefPubMedGoogle Scholar
  47. Okita K, Ichisaka T, Yamanaka S (2007) Generation of germline-competent induced pluripotent stem cells. Nature 448:313CrossRefPubMedGoogle Scholar
  48. Pennarossa G, Maffei S, Campagnol M, Tarantini L, Gandolfi F, Brevini TA (2013) Brief demethylation step allows the conversion of adult human skin fibroblasts into insulin-secreting cells. Proc Natl Acad Sci U S A 110:8948–8953CrossRefPubMedPubMedCentralGoogle Scholar
  49. Pennarossa G, Maffei S, Campagnol M, Rahman MM, Brevini TA, Gandolfi F (2014) Reprogramming of pig dermal fibroblast into insulin secreting cells by a brief exposure to 5-aza-cytidine. Stem Cell Rev 10:31–43CrossRefPubMedPubMedCentralGoogle Scholar
  50. Pennarossa G, Santoro R, Manzoni E, Pesce M, Gandolfi F, Brevini T (2018) Epigenetic erasing and pancreatic differentiation of dermal fibroblasts into insulin-producing cells are boosted by the use of low-stiffness substrate. Stem Cell Rev Rep In pressGoogle Scholar
  51. Rim JS, Strickler KL, Barnes CW, Harkins LL, Staszkiewicz J, Gimble JM, Leno GH, Eilertsen KJ (2012) Temporal epigenetic modifications differentially regulate ES cell-like colony formation and maturation. Stem Cell Discov 2:45–57CrossRefGoogle Scholar
  52. Rossant J (2011) Developmental biology: a mouse is not a cow. Nature 471:457–458CrossRefPubMedGoogle Scholar
  53. Smith AG (2001) Embryo-derived stem cells: of mice and men. Annu Rev Cell Dev Biol 17:435–462CrossRefPubMedPubMedCentralGoogle Scholar
  54. Soto DA, Ross PJ (2016) Pluripotent stem cells and livestock genetic engineering. Transgenic Res 25:289–306CrossRefPubMedPubMedCentralGoogle Scholar
  55. Spencer ND, Gimble JM, Lopez MJ (2011) Mesenchymal stromal cells: past, present, and future. Vet Surg 40:129–139CrossRefPubMedGoogle Scholar
  56. Stresemann C, Lyko F (2008) Modes of action of the DNA methyltransferase inhibitors azacytidine and decitabine. Int J Cancer 123:8–13CrossRefPubMedGoogle Scholar
  57. Sumer H, Liu J, Malaver-Ortega LF, Lim ML, Khodadadi K, Verma PJ (2011) NANOG is a key factor for induction of pluripotency in bovine adult fibroblasts. J Anim Sci 89:2708–2716CrossRefPubMedGoogle Scholar
  58. Tachibana M, Ma H, Sparman ML, Lee HS, Ramsey CM, Woodward JS, Sritanaudomchai H, Masterson KR, Wolff EE, Jia Y, Mitalipov SM (2012) X-chromosome inactivation in monkey embryos and pluripotent stem cells. Dev Biol 371:146–155CrossRefPubMedPubMedCentralGoogle Scholar
  59. Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126:663–676CrossRefGoogle Scholar
  60. Talbot NC, Blomberg le A (2008) The pursuit of ES cell lines of domesticated ungulates. Stem Cell Rev 4:235–254CrossRefPubMedGoogle Scholar
  61. Tamada H, Van Thuan N, Reed P, Nelson D, Katoku-Kikyo N, Wudel J, Wakayama T, Kikyo N (2006) Chromatin decondensation and nuclear reprogramming by nucleoplasmin. Mol Cell Biol 26:1259–1271CrossRefPubMedPubMedCentralGoogle Scholar
  62. Taylor SM, Jones PA (1982) Changes in phenotypic expression in embryonic and adult cells treated with 5-azacytidine. J Cell Physiol 111:187–194CrossRefPubMedPubMedCentralGoogle Scholar
  63. Telugu BP, Ezashi T, Roberts RM (2010) The promise of stem cell research in pigs and other ungulate species. Stem Cell Rev 6:31–41CrossRefPubMedGoogle Scholar
  64. Tesar PJ, Chenoweth JG, Brook FA, Davies TJ, Evans EP, Mack DL (2007) New cell lines from mouse epiblast share defining features with human embryonic stem cells. Nature 448:196–199CrossRefPubMedGoogle Scholar
  65. Thoma EC, Merkl C, Heckel T, Haab R, Knoflach F, Nowaczyk C, Flint N, Jagasia R, Jensen Zoffmann S, Truong HH, Petitjean P, Jessberger S, Graf M, Iacone R (2014) Chemical conversion of human fibroblasts into functional Schwann cells. Stem Cell Rep 3:539–547CrossRefGoogle Scholar
  66. Vassiliev I, Vassilieva S, Beebe LF, McIlfatrick SM, Harrison SJ, Nottle MB (2010) Development of culture conditions for the isolation of pluripotent porcine embryonal outgrowths from in vitro produced and in vivo derived embryos. J Reprod Dev 56:546–551CrossRefPubMedGoogle Scholar
  67. West FD, Terlouw SL, Kwon DJ, Mumaw JL, Dhara SK, Hasneen K, Dobrinsky JR, Stice SL (2010) Porcine induced pluripotent stem cells produce chimeric offspring. Stem Cells Dev 19:1211CrossRefPubMedGoogle Scholar
  68. West FD, Uhl EW, Liu Y, Stowe H, Lu Y, Yu P, Gallegos-Cardenas A, Pratt SL, Stice SL (2011) Brief report: chimeric pigs produced from induced pluripotent stem cells demonstrate germline transmission and no evidence of tumor formation in young pigs. Stem Cells 29:1640–1643CrossRefPubMedGoogle Scholar
  69. Wu Z, Chen J, Ren J, Bao L, Liao J, Cui C, Rao L, Li H, Gu Y, Dai H, Zhu H, Teng X, Cheng L, Xiao L (2009) Generation of pig induced pluripotent stem cells with a drug-inducible system. J Mol Cell Biol 1:46–54CrossRefPubMedGoogle Scholar
  70. Wu J, Okamura D, Li M, Suzuki K, Luo C, Ma L, He Y, Li Z, Benner C, Tamura I, Krause MN, Nery JR, Du T, Zhang Z, Hishida T, Takahashi Y, Aizawa E, Kim NY, Lajara J, Guillen P, Campistol JM, Esteban CR, Ross PJ, Saghatelian A, Ren B, Ecker JR, Izpisua Belmonte JC (2015) An alternative pluripotent state confers interspecies chimaeric competency. Nature 521:316–321CrossRefPubMedPubMedCentralGoogle Scholar
  71. Xu RH, Peck RM, Li DS, Feng X, Ludwig T, Thomson JA (2005) Basic FGF and suppression of BMP signaling sustain undifferentiated proliferation of human ES cells. Nat Methods 2:185–190CrossRefPubMedGoogle Scholar
  72. Xu XQ, Graichen R, Soo SY, Balakrishnan T, Rahmat SN, Sieh S, Tham SC, Freund C, Moore J, Mummery C, Colman A, Zweigerdt R, Davidson BP (2008) Chemically defined medium supporting cardiomyocyte differentiation of human embryonic stem cells. Differentiation 76:958–970CrossRefPubMedGoogle Scholar
  73. Ying QL, Nichols J, Chambers I, Smith A (2003) BMP induction of Id proteins suppresses differentiation and sustains embryonic stem cell self-renewal in collaboration with STAT3. Cell 115:281–292CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Anatomy of Domestic AnimalsUniversity of MilanMilanItaly
  2. 2.Laboratory of Biomedical Embryology, UniStem, Centre for Stem Cell ResearchUniversità degli Studi di MilanoMilanItaly

Personalised recommendations