Advertisement

Endoscopy in Cattle Reproduction

  • Vitezslav Havlicek
  • Gottfried Brem
  • Urban Besenfelder
Chapter

Abstract

Final follicle maturation, ovulation and early embryo development are highly dynamic processes which ultimately result in establishment of pregnancy and the birth of healthy offspring. Any intrinsic or extrinsic changes of the environmental conditions, in vivo and in vitro, including deviations caused by exogenous hormonal stimulation may have negative effects on conceptus development. To date, many technologies have provided important information contributing to our knowledge of early embryo development. Among these techniques, the application of endoscopy for the study of reproductive processes, characterised by a minimal invasive transvaginal entry into the peritoneal cavity, plays a significant role. Once established, endoscopy allows the direct visualisation of the surface of ovaries, oviducts and uterine horns in accordance to pathophysiological changes and enables the collection and transfer of oocytes and embryos at various developmental stages. This technology is particularly suitable for combining in vivo and in vitro embryo culture in order to pinpoint critical checkpoints on this process. This type of translocation from laboratory to the animal and back provides a unique chance to create novel designs and to increase understanding of early reproductive events.

Keywords

Oviduct In vivo culture Bovine embryos Embryo transfer Endoscopy 

References

  1. Aardema H, Lolicato F, van de CHA L, Brouwers JF, Vaandrager AB, van HTA T, Roelen BAJ, Vos PLAM, Helms JB, Gadella BM (2013) Bovine cumulus cells protect maturing oocytes from increased fatty acid levels by massive intracellular lipid storage. Biol Reprod 88(164):1–15.  https://doi.org/10.1095/biolreprod.112 CrossRefGoogle Scholar
  2. Abe H, Hoshi H (2003) Evaluation of bovine embryos produced in high performance serum-free media. J Reprod Dev 49:193–202CrossRefGoogle Scholar
  3. Besenfelder U, Brem G (1993) Laparoscopic embryo transfer in rabbits. J Reprod Fertil 99:53–56CrossRefGoogle Scholar
  4. Besenfelder U, Brem G (1998) Tubal transfer of bovine embryos: a simple endoscopic method reducing long-term exposure of in vitro produced embryos. Theriogenology 50:739–745CrossRefGoogle Scholar
  5. Besenfelder U, Zinovieva N, Dietrich E, Sohnrey B, Holtz W, Brem G (1994) Tubal transfer of goat embryos using endoscopy. Vet Rec 135:480–481CrossRefGoogle Scholar
  6. Besenfelder U, Moedl J, Mueller M, Brem G (1997) Endoscopic embryo collection and embryo transfer into the oviduct and the uterus of pigs. Theriogenology 47:1051–1060CrossRefGoogle Scholar
  7. Besenfelder U, Havlicek V, Mösslacher G, Brem G (2001) Collection of tubal stage bovine embryos by means of endoscopy. A technique report. Theriogenology 55:837–845CrossRefGoogle Scholar
  8. Besenfelder U, Havlicek V, Moesslacher G, Gilles M, Tesfaye D, Griese J, Hoelker M, Hyttel PM, Laurincik J, Brem G, Schellander K (2008) Endoscopic recovery of early preimplantation bovine embryos: effect of hormonal stimulation, embryo kinetics and repeated collection. Reprod Domest Anim 43:566–572CrossRefGoogle Scholar
  9. Bó GA, Guerrero DC, Tríbulo A, Tríbulo H, Tríbulo R, Rogan D, Mapletoft RJ (2010) New approaches to superovulation in the cow. Reprod Fertil Dev 22:106–112CrossRefGoogle Scholar
  10. Bollwein H, Lüttgenau J, Herzog K (2013) Bovine luteal blood flow: basic mechanism and clinical relevance. Reprod Fertil Dev 25:71–79CrossRefGoogle Scholar
  11. Carter F, Rings F, Mamo S, Holker M, Kuzmany A, Besenfelder U, Havlicek V, Mehta JP, Tesfaye D, Schellander K, Lonergan P (2010) Effect of elevated circulating progesterone concentration on bovine blastocyst development and global transcriptome following endoscopic transfer of in vitro produced embryos to the bovine oviduct. Biol Reprod 83:707–719CrossRefGoogle Scholar
  12. Coy P, Avilés M (2010) What controls polyspermy in mammals, the oviduct or the oocyte? Biol Rev Camb Philos Soc 85:593–605PubMedGoogle Scholar
  13. De Souza DK, Salles LP, Rosa e Silva AA (2015) Aspects of energetic substrate metabolism of in vitro and in vivo bovine embryos. Braz J Med Biol Res 48:191–197CrossRefGoogle Scholar
  14. Demant M, Deutsch DR, Froehlich T, Wolf E, Arnold GJ (2015) Proteome analysis of early lineage specification in bovine embryos. Proteomics 15:688–701CrossRefGoogle Scholar
  15. Diskin MG, Morris DG (2008) Embryonic and early foetal losses in cattle and other ruminants. Reprod Domest Anim 43:260–267CrossRefGoogle Scholar
  16. Enright BP, Lonergan P, Dinnyes A, Fair T, Ward FA, Yang X, Boland MP (2000) Culture of in vitro produced bovine zygotes in vitro vs in vivo: implications for early embryo development and quality. Theriogenology 54:659–673CrossRefGoogle Scholar
  17. Fayrer-Hosken RA, Younis AI, Brackett BG, McBride CE, Harper KM, Keefer CL, Cabaniss DC (1989) Laparoscopic oviductal transfer of in vitro matured and in vitro fertilized bovine oocytes. Theriogenology 32:413–420CrossRefGoogle Scholar
  18. Felmer RN, Arias ME, Muñoz GA, Rio JH (2011) Effect of different sequential and two-step culture systems on the development, quality, and RNA expression profile of bovine blastocysts produced in vitro. Mol Reprod Dev 78:403–414CrossRefGoogle Scholar
  19. Gad A, Besenfelder U, Rings F, Ghanem N, Salilew-Wondim D, Hossain MM, Tesfaye D, Lonergan P, Becker A, Cinar U, Schellander K, Havlicek V, Hölker M (2011) Effect of reproductive tract environment following controlled ovarian hyperstimulation treatment on embryo development and global transcriptome profile of blastocysts: implications for animal breeding and human assisted reproduction. Hum Reprod 26:1693–1707CrossRefGoogle Scholar
  20. Gad A, Hoelker M, Besenfelder U, Havlicek V, Cinar U, Rings F, Held E, Dufort I, Sirard MA, Schellander K, Tesfaye D (2012) Molecular mechanisms and pathways involved in bovine embryonic genome activation and their regulation by alternative in vivo and in vitro culture conditions. Biol Reprod 87(100):1–13.  https://doi.org/10.1095/biolreprod.112.099697 CrossRefGoogle Scholar
  21. Galli C, Crotti G, Notari C, Turini P, Duchi R, Lazzari G (2001) Embryo production by ovum pick up from live donors. Theriogenology 55:1341–1357CrossRefGoogle Scholar
  22. Galli C, Duchi R, Crotti G, Turini P, Ponderato N, Colleoni S, Lagutina I, Lazzari G (2003) Bovine embryo technologies. Theriogenology 59:599–616CrossRefGoogle Scholar
  23. Ginther OJ (2014) How ultrasound technologies have expanded and revolutionized research in reproduction in large animals. Theriogenology 81:112–125 ReviewCrossRefGoogle Scholar
  24. Guimarães CR, Oliveira ME, Rossi JR, Fernandes CA, Viana JH, Palhao MP (2015) Corpus luteum blood flow evaluation on day 21 to improve the management of embryo recipient herds. Theriogenology 84:237–241CrossRefGoogle Scholar
  25. Hasler JF (2006) The Holstein cow in embryo transfer today as compared to 20 years ago. Theriogenology 65:4–16CrossRefGoogle Scholar
  26. Havlicek V, Wetscher F, Huber T, Brem G, Mueller M, Besenfelder U (2005a) In vivo culture of IVM/ IVF embryos in bovine oviducts by transvaginal endoscopy. J Vet Med A Physiol Pathol Clin Med 52:94–98CrossRefGoogle Scholar
  27. Havlicek V, Lopatarova M, Cech S, Dolezel R, Huber T, Pavlok A, Brem G, Besenfelder U (2005b) In vivo culture of bovine embryos and quality assessment of in vivo vs. in vitro produced embryos. Vet Med–Czech 50:149–157CrossRefGoogle Scholar
  28. Havlicek V, Kuzmany A, Cseh S, Brem G, Besenfelder U (2010) The effect of long-term in vivo culture in bovine oviduct and uterus on the development and cryo-tolerance of in vitro produced bovine embryos. Reprod Domest Anim 45:832–837PubMedGoogle Scholar
  29. Jillella D, Eaton RJ, Baker AA (1977) Successful transfer of a bovine embryo through a cannulated fallopian tube. Vet Rec 100:385–386CrossRefGoogle Scholar
  30. Killian GJ (2004) Evidence for the role of oviduct secretions in sperm function, fertilization and embryo development. Anim Reprod Sci 82–83:141–153CrossRefGoogle Scholar
  31. Lambert RD, Sirard MA, Bernard C, Béland R, Rioux JE, Leclerc P, Ménard DP, Bedoya M (1986) In vitro fertilization of bovine oocytes matured in vivo and collected at laparoscopy. Theriogenology 25:117–133CrossRefGoogle Scholar
  32. Laurincík J, Pícha J, Píchová D, Oberfranc M (1991) Timing of laparoscopic aspiration of preovulatory oocytes in heifers. Theriogenology 35:415–423CrossRefGoogle Scholar
  33. Lawson RA, Rowson LE, Adams CE (1972) The development of cow eggs in the rabbit oviduct and their viability after re-transfer to heifers. J Reprod Fertil 28:313–315CrossRefGoogle Scholar
  34. Lazzari G, Colleoni S, Lagutina I, Crotti G, Turini P, Tessaro I, Brunetti D, Duchi R, Galli C (2010) Short-term and long-term effects of embryo culture in the surrogate sheep oviduct versus in vitro culture for different domestic species. Theriogenology 73:748–757CrossRefGoogle Scholar
  35. Leidenfrost S, Boelhauve M, Reichenbach M, Güngör T, Reichenbach H-D, Sinowatz F, Wolf E, Habermann FA (2011) Cell arrest and cell death in mammalian preimplantation development: lessons from the bovine model. PLoS One 6:e22121.  https://doi.org/10.1371/journal.pone.0022121 CrossRefPubMedPubMedCentralGoogle Scholar
  36. Lopera-Vásquez R, Hamdi M, Fernandez-Fuertes B, Maillo V, Beltrán-Breña P, Calle A, Redruello A, López-Martín S, Gutierrez-Adán A, Yañez-Mó M, Ramirez MÁ, Rizos D (2016) Extracellular vesicles from BOEC in in vitro embryo development and quality. PLoS One 11:e0148083.  https://doi.org/10.1371/journal.pone.0148083 CrossRefPubMedPubMedCentralGoogle Scholar
  37. Lucy MC (2001) Reproductive loss in high-producing dairy cattle: where will it end? J Dairy Sci 84:1277–1293CrossRefGoogle Scholar
  38. Maillo V, Rizos D, Besenfelder U, Havlicek V, Kelly AK, Garrett M, Lonergan P (2012) Influence of lactation on metabolic characteristics and embryo development in postpartum Holstein dairy cows. J Dairy Sci 95:3865–3876CrossRefGoogle Scholar
  39. Mertens E, Besenfelder U, Gilles M, Holker M, Rings F, Havlicek V, Schellander K, Herrler A (2007) Influence of in vitro culture of bovine embryos on the structure of the zona pellucida. Reprod Fertil Dev 19:211–212CrossRefGoogle Scholar
  40. Newcomb R, Rowson LE (1975) A technique for the simultaneous flushing of ova from the bovine oviduct and uterus. Vet Rec 96:468–469CrossRefGoogle Scholar
  41. Newcomb R, Christie WB, Rowson LE (1980) Fetal survival rate after the surgical transfer of two bovine embryos. J Reprod Fertil 59:31–36CrossRefGoogle Scholar
  42. Pereira MHC, Sanches CP, Guida TG, Rodrigues ADP, Aragon FL, Veras MB, Borges PT, Wiltbank MC, Vasconcelos JLM (2013) Timing of prostaglandin F2 treatment in an estrogen-based protocol for timed artificial insemination or timed embryo transfer in lactating dairy cows. J Dairy Sci 96:2837–2846CrossRefGoogle Scholar
  43. Perry G (2015) 2014 statistics of embryo collection and transfer in domestic farm animals. Embryo Transfer Newsletter 33:9–18Google Scholar
  44. Pollard JW, Leibo SP (1994) Chilling sensitivity of mammalian embryos. Theriogenology 41:101–106CrossRefGoogle Scholar
  45. Ponsart C, Le Bourhis D, Knijn H, Fritz S, Guyader-Joly C, Otter T, Lacaze S, Charreaux F, Schibler L, Dupassieux D, Mullaart E (2013) Reproductive technologies and genomic selection in dairy cattle. Reprod Fertil Dev 26:12–21CrossRefGoogle Scholar
  46. Reichenbach HD, Wiebke NH, Besenfelder UH, Moedl J, Brem G (1993) Transvaginal laparoscopic guided aspiration of bovine follicular oocytes: preliminary results. Theriogenology 39:295 (Abstr.)CrossRefGoogle Scholar
  47. Reichenbach HD, Wiebke NH, Moedl J, Zhu J, Brem G (1994) Laparoscopy through the vaginal fornix of cows for the repeated aspiration of follicular oocytes. Vet Rec 135:353–356CrossRefGoogle Scholar
  48. Rizos D, Fair T, Papadopoulos S, Boland MP, Lonergan P (2002a) Developmental, qualitative, and ultrastructural differences between ovine and bovine embryos produced in vivo or in vitro. Mol Reprod Dev 62:320–327CrossRefGoogle Scholar
  49. Rizos D, Ward F, Duffy P, Boland MP, Lonergan P (2002b) Consequences of bovine oocyte maturation, fertilization or early embryo development in vitro versus in vivo: implications for blastocyst yield and blastocyst quality. Mol Reprod Dev 61:234–248CrossRefGoogle Scholar
  50. Rizos D, Carter F, Besenfelder U, Havlicek V, Lonergan P (2010) Contribution of the female reproductive tract to low fertility in postpartum lactating dairy cows. J Dairy Sci 93:1022–1029CrossRefGoogle Scholar
  51. Roelofs J, López-Gatius F, Hunter RH, van Eerdenburg FJ, Hanzen C (2010) When is a cow in estrus? Clinical and practical aspects. Theriogenology 74:327–344CrossRefGoogle Scholar
  52. Ruckebusch Y, Bayard F (1975) Motility of the oviduct and uterus of the cow during the oestrous cycle. J Reprod Fertil 43:23–32CrossRefGoogle Scholar
  53. Salilew-Wondim D, Fournier E, Hoelker M, Saeed-Zidane M, Tholen E, Looft C, Neuhoff C, Besenfelder U, Havlicek V, Rings F, Gagné D, Sirard MA, Robert C, Shojaei Saadi HA, Gad A, Schellander K, Tesfaye D (2015) Genome-wide DNA methylation patterns of bovine blastocysts developed in vivo from embryos completed different stages of development in vitro. PLoS One 10:e0140467.  https://doi.org/10.1371/journal.pone.0140467 CrossRefPubMedPubMedCentralGoogle Scholar
  54. Santl B, Wenigerkind H, Schernthaner W, Moedl J, Stojkovic M, Prelle K, Holtz W, Brem G, Wolf E (1998) Comparison of ultrasound-guided vs laparoscopic transvaginal ovum pick-up (OPU) in Simmental heifers. Theriogenology 50:89–100CrossRefGoogle Scholar
  55. Schmaltz-Panneau B, Locatelli Y, Uzbekova S, Perreau C, Mermillod P (2015) Bovine oviduct epithelial cells dedifferentiate partly in culture, while maintaining their ability to improve early embryo development rate and quality. Reprod Domest Anim 50:719–729CrossRefGoogle Scholar
  56. Shojaei Saadi HA, O’Doherty AM, Gagné D, Fournier E, Grant JR, Sirard MA, Robert C (2014a) An integrated platform for bovine DNA methylome analysis suitable for small samples. BMC Genomics 15:451CrossRefGoogle Scholar
  57. Shojaei Saadi HA, Vigneault C, Sargolzaei M, Gagné D, Fournier E, de Montera B, Chesnais J, Blondin P, Robert C (2014b) Impact of whole-genome amplification on the reliability of pre-transfer cattle embryo breeding value estimates. BMC Genomics 15:889 http://www.biomedcentral.com/1471-2164/15/889 CrossRefGoogle Scholar
  58. Sirard MA, Lambert RD (1985) In vitro fertilization of bovine follicular oocytes obtained by laparoscopy. Biol Reprod 33:487–494CrossRefGoogle Scholar
  59. Sirard MA, Lambert RD, Ménard DP, Bedoya M (1985) Pregnancies after in-vitro fertilization of cow follicular oocytes, their incubation in rabbit oviduct and their transfer to the cow uterus. J Reprod Fertil 75:551–556CrossRefGoogle Scholar
  60. Sirard MA, Parrish JJ, Ware CB, Leibfried-Rutledge ML, First NL (1988) The culture of bovine oocytes to obtain developmentally competent embryos. Biol Reprod 39:546–552CrossRefGoogle Scholar
  61. Smith RF, Oultram J, Dobson H (2014) Herd monitoring to optimise fertility in the dairy cow: making the most of herd records, metabolic profiling and ultrasonography (research into practice). Animal 8(Suppl 1):185–198 ReviewCrossRefGoogle Scholar
  62. Tesfaye D, Ponsuksili S, Wimmers K, Gilles M, Schellander K (2004) A comparative expression analysis of gene transcripts in post-fertilization developmental stages of bovine embryos produced in vitro or in vivo. Reprod Domest Anim 39:396–404CrossRefGoogle Scholar
  63. Thomasen JR, Willam A, Egger-Danner C, Sørensen AC (2016) Reproductive technologies combine well with genomic selection in dairy breeding programs. J Dairy Sci 99:1331–1340CrossRefGoogle Scholar
  64. Trounson AO, Willadsen SM, Rowson LE (1977) Fertilization and development capability of bovine follicular oocytes matured in vitro and in vivo and transferred to the oviducts of rabbits and cows. J Reprod Fertil 51:321–327CrossRefGoogle Scholar
  65. Van Hoeck V, Sturmey RG, Bermejo-Alvarez P, Rizos D, Gutierrez-Adan A et al (2011) Elevated non-esterified fatty acid concentrations during bovine oocyte maturation compromise early embryo physiology. PLoS One 6:e23183.  https://doi.org/10.1371/journal.pone.0023183 CrossRefPubMedPubMedCentralGoogle Scholar
  66. Van Soom A, Wrathall AE, Herrler A, Nauwynck HJ (2010) Is the zona pellucida an efficient barrier to viral infection? Reprod Fertil Dev 22:21–31CrossRefGoogle Scholar
  67. Ward F, Enright B, Rizos D, Boland M, Lonergan P (2002) Optimization of in vitro bovine embryo production: effect of duration of maturation, length of gamete co-incubation, sperm concentration and sire. Theriogenology 57:2105–2117CrossRefGoogle Scholar
  68. Wetscher F, Havlicek V, Huber T, Mueller M, Brem G, Besenfelder U (2005a) Effect of morphological properties of transferred embryonic stages on tubal migration implications for in vivo culture in the bovine oviduct. Theriogenology 64:41–48CrossRefGoogle Scholar
  69. Wetscher F, Havlicek V, Huber T, Gilles M, Tesfaye D, Griese J, Wimmers K, Schellander K, Müller M, Brem G, Besenfelder U (2005b) Intrafallopian transfer of gametes and early stage embryos for in vivo culture in cattle. Theriogenology 64:30–40CrossRefGoogle Scholar
  70. Wiltbank MC, Baez GM, Garcia-Guerra A, Toledo MZ, Monteiro PL, Melo LF, Ochoa JC, Santos JE, Sartori R (2016) Pivotal periods for pregnancy loss during the first trimester of gestation in lactating dairy cows. Theriogenology 86:239–253CrossRefGoogle Scholar
  71. Wirtu G, MacLean R, Galiguis J, Paccamonti D, Eilts B, Godke R, Besenfelder U, Dresser B, Gentry G (2010) Endoscope-guided transfer of sperm-injected oocytes into the oviducts of eland and bongo antelopes. Reprod Fertil Dev 22:259 (Abstr.)CrossRefGoogle Scholar
  72. Wolfe DF, Riddell MG, Mysinger PW, Stringfellow DA, Carson RL, Garrett PD (1990) A caudal flank approach for the collection of oviductal-stage bovine embryos. Theriogenology 34:167–174CrossRefGoogle Scholar
  73. Wydooghe E, Heras S, Dewulf J, Piepers S, Van den Abbeel E, De Sutter P, Vandaele L, Van Soom A (2014) Replacing serum in culture medium with albumin and insulin, transferrin and selenium is the key to successful bovine embryo development in individual culture. Reprod Fertil Dev 26:717–724CrossRefGoogle Scholar
  74. Young LE, Fernandes K, McEvoy TG, Butterwith SC, Gutierrez CG, Carolan C, Carolan C, Broadbent PJ, Robinson JJ, Wilmut I, Sinclair KD (2001) Epigenetic change in IGF2R is associated with fetal overgrowth after sheep embryo culture. Nat Genet 27:153–154CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Vitezslav Havlicek
    • 1
  • Gottfried Brem
    • 1
  • Urban Besenfelder
    • 1
  1. 1.Reproduction Centre for Cattle—WieselburgUniversity of Veterinary Medicine-ViennaViennaAustria

Personalised recommendations