Advertisement

Embryo Transfer Technologies in Pigs

  • Curtis R. Youngs
Chapter

Abstract

Embryo transfer (ET) became a reality in the swine industry with the birth of the first live ET piglets in 1950. Since that pioneering achievement more than 68 years ago, significant developments in porcine ET and its related technologies have occurred. Although the volume of commercial ET activity with pigs is low compared to that reported for cattle, substantial porcine ET activity is taking place in private companies and institutes engaged in biomedical research. In vitro production of pig embryos has greatly surpassed that of in vivo-derived embryos, and development of nonsurgical methods for transfer of swine embryos has opened the door to potential widespread commercial application of porcine ET. The historical inability to cryopreserve pig embryos has been overcome to a great extent with development of protocols for vitrification of porcine embryos. The creation of genetically modified pigs via somatic cell nuclear transfer or genome-editing technologies depends upon successful ET, and the needs of the biomedical research community likely will be the impetus for further refinements in pig ET technologies.

Keywords

Pig Embryo collection Embryo transfer Nonsurgical embryo transfer Embryo cryopreservation Biosecurity Sanitary handling of embryos Swine assisted reproductive technologies 

References

  1. Anderson LL, Parker RO (1976) Distribution and development of embryos in the pig. J Reprod Fertil 46:363–368.  https://doi.org/10.1530/jrf.0.0460363 CrossRefPubMedGoogle Scholar
  2. Baker RD, Dziuk PJ (1970) Aerial transport of fertilized pig ova. Can J Anim Sci 50(1):215–216CrossRefGoogle Scholar
  3. Berthelot F, Martinat-Botté F, Vajta G, Terqui M (2003) Cryopreservation of porcine embryos: state of the art. Livest Prod Sci 83:73–83.  https://doi.org/10.1016/S0301-6226(03)00038-1 CrossRefGoogle Scholar
  4. Bielanski A, Algire J, Lalonde A, Garceac A, Pollard JW, Plante C (2013) Nontransmission of porcine circovirus 2 (PCV2) by embryo transfer. Theriogenology 80(2):77–83.  https://doi.org/10.1016/j.theriogenology.2013.03.022 CrossRefPubMedGoogle Scholar
  5. Cheng WTK, Polge C, Moor RM (1986) In vitro fertilization of pig and sheep oocytes. Theriogenology 25(1):146 (abstr)CrossRefGoogle Scholar
  6. Ducro-Steverink DWB, Peters CGW, Maters CC, Hazeleger W, Merks JWM (2004) Reproduction results and offspring performance after non-surgical embryo transfer in pigs. Theriogenology 62(3/4):522–531.  https://doi.org/10.1016/j.theriogenology.2003.11.010 CrossRefPubMedGoogle Scholar
  7. Galvin JM, Killian DB, Stewart ANV (1994) A procedure for successful nonsurgical embryo transfer in swine. Theriogenology 41(6):1279–1289.  https://doi.org/10.1016/0093-691X(94)90486-3 CrossRefPubMedGoogle Scholar
  8. Grupen CG (2014) The evolution of porcine embryo in vitro production. Theriogenology 81(1):24–37.  https://doi.org/10.1016/j.theriogenology.2013.09.022 CrossRefPubMedGoogle Scholar
  9. Guthrie HD, Polge C (1976) Luteal function and oestrus in gilts treated with a synthetic analogue of prostaglandin F-2α (ICI 79,939) at various times during the oestrus cycle. J Reprod Fertil 48(2):423–425.  https://doi.org/10.1530/jrf.0.0480423 CrossRefPubMedGoogle Scholar
  10. Hancock JL, Hovell GJR (1962) Egg transfer in the sow. J Reprod Fertil 4:195–201CrossRefGoogle Scholar
  11. Hayashi S, Kobayashi K, Mizuno J, Saitoh K, Hirano S (1989) Birth of piglets from frozen embryos. Vet Rec 125:43–44CrossRefGoogle Scholar
  12. Hazeleger W, Kemp B (1994) Farrowing rate and litter size after transcervical embryo transfer in sows. Reprod Dom Anim 29(6):481–487.  https://doi.org/10.1111/j.1439-0531.1994.tb00597.x CrossRefGoogle Scholar
  13. Hazeleger W, Noordhuizen JPTM, Kemp B (2000) Effect of asynchronous non-surgical transfer of porcine embryos on pregnancy rate and embryonic survival. Livest Prod Sci 64(2/3):281–284.  https://doi.org/10.1016/S0301-6226(99)00147-5 CrossRefGoogle Scholar
  14. Heape W (1890) Preliminary note on the transplantation and growth of mammalian ova within a uterine foster-mother. Proc R Soc Lond 48:457–458CrossRefGoogle Scholar
  15. Kikuchi K, Kaneko H, Nakai M, Somfai T, Kashiwazaki N, Nagai T (2016) Contribution of in vitro systems to preservation and utilization of porcine genetic resources. Theriogenology 86(1):170–175.  https://doi.org/10.1016/j.theriogenology.2016.04.029 CrossRefPubMedGoogle Scholar
  16. Kraeling RR, Webel SK (2015) Current strategies for reproductive management of gilts and sows in North America. J Anim Sci Biotechnol 6:3 http://www.jasbsci.com/content/6/1/3 CrossRefGoogle Scholar
  17. Kurome M, Geistlinger L, Kessler B, Zakhartchenko V, Klymiuk N, Wuensch A, Richter A, Baehr A, Kraehe K, Burkhardt K, Flisikowski K, Flisikowska T, Merkl C, Landmann M, Durkovic M, Tschukes A, Kraner S, Schindelhauer D, Petri T, Kind A, Nagashima H, Schnieke A, Zimmer R, Wolf E (2013) Factors influencing the efficiency of generating genetically engineered pigs by nuclear transfer: multi-factorial analysis of a large data set. BMC Biotechnol 13:43 http://www.biomedcentral.com/1472-6750/13/43 CrossRefGoogle Scholar
  18. Kvasnitski AV (1950) [The research on interbreed ova transfer in pigs.] Socialist Livestock Breeding Journal, Semi-annual report of the Ukrainian Ministry of Agriculture 1950; November issue, pp 12–15 (in Ukrainian)Google Scholar
  19. Kvasnitski AV (2001) Research on interbreed ova transfer in pigs. Theriogenology 56(8):1285–1289CrossRefGoogle Scholar
  20. Li J, Rieke A, Day BN, Prather RS (1996) Technical note: porcine non-surgical embryo transfer. J Anim Sci 74(9):2263–2268.  https://doi.org/10.2527/1996.7492263x CrossRefPubMedGoogle Scholar
  21. Liu Y, Li J, Løvendahl P, Schmidt M, Larsen K, Callesen H (2015) In vitro manipulation techniques of porcine embryos: a meta-analysis related to transfers, pregnancies and piglets. Reprod Fertil Dev 27:429–439.  https://doi.org/10.1071/RD13329 CrossRefPubMedGoogle Scholar
  22. Maehara M, Matsunari H, Honda K, Nakano K, Takeuchi Y, Kanai T, Matsuda T, Matsumura Y, Hagiwara Y, Sasayama N, Shirasu A, Takahashi M, Watanabe M, Umeyama K, Hanazono Y, Nagashima H (2012) Hollow fiber vitrification provides a novel method for cryopreserving in vitro maturation/fertilization-derived porcine embryos. Biol Reprod 87(6):133., 8 pages.  https://doi.org/10.1095/biolreprod.112.100339 CrossRefPubMedGoogle Scholar
  23. Martinez EA, Caamaño JN, Gil MA, Rieke A, McCauley TC, Cantley TC, Vazquez JM, Roca J, Vazquez JL, Didion BA, Murphy CN, Prather RS, Day BN (2004) Successful nonsurgical deep uterine embryo transfer in pigs. Theriogenology 61(1):137–146.  https://doi.org/10.1016/S0093-691X(03)00190-0 CrossRefPubMedGoogle Scholar
  24. Martinez EA, Cuello C, Parrilla I, Rodriguez-Martinez H, Roca J, Vazquez JL, Vazquez JM, Gil MA (2013) Design, development, and application of a non-surgical deep uterine embryo transfer technique in pigs. Anim Front 3(4):40–47.  https://doi.org/10.2527/af.2013-0032 CrossRefGoogle Scholar
  25. Martinez EA, Martinez CA, Nohalez A, Sanchez-Osorio J, Vazquez JM, Roca J, Parrilla I, Gil MA, Cuello C (2015) Nonsurgical deep uterine transfer of vitrified, in vivo-derived, porcine embryos is as effective as the default surgical approach. Sci Rep 5:10587.  https://doi.org/10.1038/srep10587 CrossRefPubMedPubMedCentralGoogle Scholar
  26. Martinez EA, Cuello C, Parrilla I, Martinez CA, Nohalez A, Vazquez JL, Vazquez JM, Roca J, Gil MA (2016a) Recent advances toward the practical application of embryo transfer in pigs. Theriogenology 85(1):152–161.  https://doi.org/10.1016/j.theriogenology.2015.06.002 CrossRefPubMedGoogle Scholar
  27. Martinez EA, Nohalez A, Martinez CA, Parrilla I, Vila J, Colina I, Diaz M, Reixach J, Vazquez J, Roca J, Cuello C, Gil M (2016b) The recipients’ parity does not influence their reproductive performance following non-surgical deep uterine porcine embryo transfer. Reprod Dom Anim 51(1):123–129.  https://doi.org/10.1111/rda.12654 CrossRefGoogle Scholar
  28. Miles JR, Vallet JL, Ford JJ, Freking BA, Cushman RA, Oliver WT, Rempel LA (2012) Contributions of the maternal uterine environment and piglet genotype on weaning survivability potential: I. Development of neonatal piglets after reciprocal embryo transfers between Meishan and White crossbred gilts. J Anim Sci 90(7):2181–2192.  https://doi.org/10.2527/jas.2011-4724 CrossRefPubMedGoogle Scholar
  29. Miles JR, Vallet JL, Ford JJ, Freking BA, Oliver WT, Rempel LA (2015) Contributions of the maternal uterine environment and piglet genotype on weaning survivability potential: II. Piglet growth, lactation performance, milk composition, and piglet blood profiles during lactation following reciprocal embryo transfers between Meishan and White crossbred gilts. J Anim Sci 93(4):1555–1564.  https://doi.org/10.2527/jas.2014-8426 CrossRefPubMedGoogle Scholar
  30. Nagashima H, Kashiwazaki N, Ashman RJ, Grupen CG, Nottle MB (1995) Cryopreservation of porcine embryos. Nature 374(6521):416.  https://doi.org/10.1038/374416a0 CrossRefPubMedGoogle Scholar
  31. Niemann H (1985) Sensitivity of pig morulae to DMSO/PVP or glycerol treatment and cooling to 10°C. Theriogenology 23(1):213 (abstr)CrossRefGoogle Scholar
  32. Onishi A, Iwamoto M, Akita T, Mikawa S, Takeda K, Awata T, handed H, Perry AC (2000) Pig cloning by microinjection of fetal fibroblast nuclei. Science 289(5482):1188–1190.  https://doi.org/10.1126/science.289.5482.1188 CrossRefPubMedGoogle Scholar
  33. Polge C, Day BN (1968) Pregnancy following non-surgical egg transfer in pigs. Vet Rec 82:712Google Scholar
  34. Polge C, Wilmut I, Rowson LEA (1974) The low temperature preservation of cow, sheep and pig embryos. Cryobiology 560:82 (abstr)Google Scholar
  35. Pomeroy RW (1960) Infertility and neonatal mortality in the sow. III. Neonatal mortality and foetal development. J Agric Sci (Camb) 54:31–56CrossRefGoogle Scholar
  36. Prather RS, Sims MM, First NL (1989) Nuclear transplantation in early pig embryos. Biol Reprod 41(3):414–418.  https://doi.org/10.1095/biolreprod41.3.414 CrossRefPubMedGoogle Scholar
  37. Reichenbach HD, Modl J, Brem G (1993) Piglets born after transcervical transfer of embryos into recipient gilts. Vet Rec 133(2):36–39CrossRefGoogle Scholar
  38. Sims MM, First NL (1987) Nonsurgical embryo transfer in swine. J Anim Sci 65(Suppl 1):386 (abstr)Google Scholar
  39. Somfai T, Yoshioka K, Tanihara F, Kaneko H, Noguchi J, Kashiwazaki N, Nagai T, Kikuchi K (2014) Generation of live piglets from cryopreserved oocytes for the first time using a defined system for in vitro embryo production. PLoS One 9(5):e97731.  https://doi.org/10.1371/journal.pone.0097731 CrossRefPubMedPubMedCentralGoogle Scholar
  40. Stringfellow DA (2011) Recommendations for the sanitary handling of in-vivo derived embryos. In: Stringfellow DA, Givens MD (eds) Manual of the International Embryo Transfer Society, 4th Ed. IETS, Champaign, pp 65–68Google Scholar
  41. Suzuki C, Iwamura S, Yoshioka K (2004) Birth of piglets through the non-surgical transfer of blastocysts produced in vitro. J Reprod Dev 50(4):487–491.  https://doi.org/10.1262/jrd.50.487 CrossRefPubMedGoogle Scholar
  42. Tan W, Proudfoot C, Lillico SG, Whitelaw CBA (2016) Gene targeting, genome editing: from Dolly to editors. Transgenic Res.  https://doi.org/10.1007/s11248-016-9932-x
  43. Wallenhorst S, Holtz W (1999) Transfer of pig embryos to different uterine sites. J Anim Sci 77(9):2327–2329.  https://doi.org/10.2527/1999.7792327x CrossRefPubMedGoogle Scholar
  44. Whittingham DG, Leibo SP, Mazur P (1972) Survival of mouse embryos frozen to −196°C and −269°C. Science 178(4059):411–414.  https://doi.org/10.1126/science.178.4059.411 CrossRefPubMedGoogle Scholar
  45. Wilmut I (1972) The low temperature preservation of mammalian embryos. J Reprod Fertil 31:513–514CrossRefGoogle Scholar
  46. Wrathall AE, Done JT, Stuart P, Mitchell D, Betteridge KJ, Randall GCB (1970) Successful intercontinental pig conceptus transfer. Vet Rec 87:226–228CrossRefGoogle Scholar
  47. Yonemura I, Fujino Y, Irie S, Miura Y (1996) Transcervical transfer of porcine embryos under practical conditions. J Reprod Dev 42:89–94.  https://doi.org/10.1262/jrd.42.89 CrossRefGoogle Scholar
  48. Yonemura I, Miyamoto K, Nishida M (2003) Non-surgical transfer of porcine embryos. Theriogenology 59:378 (abstr)Google Scholar
  49. Youngs CR (2001) Factors influencing the success of embryo transfer in the pig. Theriogenology 56(8):1311–1320.  https://doi.org/10.1016/S0093-691X(01)00632-X CrossRefPubMedGoogle Scholar
  50. Youngs CR (2007) Methods for disease-free introduction of swine germplasm resources. In: Proc. seminar on reproduction: optimizing genetics, health, and production, American Association of Swine Veterinarians, March 4, Orlando, FL, pp 7–12Google Scholar
  51. Youngs CR, Christenson LK, Ford SP (1994a) Investigations into the control of litter size in swine: III. A reciprocal embryo transfer study of early conceptus development. J Anim Sci 72(3):725–731.  https://doi.org/10.2527/1994.723725x CrossRefPubMedGoogle Scholar
  52. Youngs CR, Knight TJ, Batt SM, Beitz DC (1994b) Phospholipid, cholesterol, triacylglycerol, and fatty acid composition of porcine blastocysts. Theriogenology 41(1):343 (abstr)CrossRefGoogle Scholar
  53. Youngs CR, Leibo SP, Godke RA (2010) Embryo cryopreservation in domestic mammalian livestock species. CAB Reviews: Perspectives in Agriculture, Veterinary Science, Nutrition and Natural Resources 5(60):1–11.  https://doi.org/10.1079/PAVSNNR20105060 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Animal ScienceIowa State UniversityAmesUSA

Personalised recommendations