Advertisement

Artificial Insemination in Domestic and Wild Animal Species

  • Dagmar Waberski
Chapter

Abstract

Artificial insemination (AI) is the key technology in livestock production for achieving genetic progress and maintenance of genetic diversity. It is also a basic tool for advanced assisted reproductive technologies in animal species. This article reviews the state-of-the-art and current development in AI, including its principle steps, i.e., collection, evaluation, and preservation of semen, as well as various insemination strategies. Opportunities for this first-generation biotechnology are illustrated in domestic and wild animal species against the background of emerging molecular techniques.

Keywords

Artificial insemination AI management Semen collection Semen evaluation Semen preservation Semen freezing Estrus detection Timing of insemination Insemination techniques Fertility 

References

  1. Adams GP, Ratto MH (2013) Ovulation-inducing factor in seminal plasma: a review. Anim Reprod Sci 136:148–156PubMedCrossRefGoogle Scholar
  2. Amann RP, Saacke RG, Barbato GF, Waberski D (2017) Measuring male-to-male differences in fertility or effects of semen treatments. Annu Rev Anim Biosci 6:255–286.  https://doi.org/10.1146/annurev-animal-030117-014829 [Epub ahead of print]CrossRefPubMedGoogle Scholar
  3. Amann RP, Waberski D (2014) Computer-assisted sperm analysis (CASA): capabilities and potential developments. Theriogenology 81:5–17PubMedCrossRefGoogle Scholar
  4. Amidi F, Pazhohan A, Shabani Nashtaei M, Khodarahmian M, Nekoonam S (2016) The role of antioxidants in sperm freezing: a review. Cell Tissue Bank 17(4):745–756PubMedCrossRefGoogle Scholar
  5. Arav A, Saragusty J (2016) Directional freezing of sperm and associated derived technologies. Anim Reprod Sci 169:6–13PubMedCrossRefPubMedCentralGoogle Scholar
  6. Asa CS, Bauman K, Callahan P, Bauman J, Volkmann DH, Jöchle W (2006) GnRH-agonist induction of fertile estrus with either natural mating or artificial insemination, followed by birth of pups in gray wolves (Canis lupus). Theriogenology 66:1778–1782PubMedCrossRefGoogle Scholar
  7. Berland MA, Ulloa-Leal C, Barría M, Wright H, Dissen GA, Silva ME, Ojeda SR, Ratto MH (2016) Seminal plasma induces ovulation in llamas in the absence of a copulatory stimulus: role of nerve growth factor as an ovulation-inducing factor. Endocrinology 157:3224–2332PubMedPubMedCentralCrossRefGoogle Scholar
  8. Bertol MA, Weiss RR, Kozicki LE, Abreu AC, Pereira JF, da Silva JJ (2016) In vitro and in vivo fertilization potential of cryopreserved spermatozoa from bull epididymides stored for up to 30 hours at ambient temperature (18 °C–20 °C). Theriogenology 86:1014–1021PubMedCrossRefGoogle Scholar
  9. Bisinotto RS, Ribeiro ES, Santos JE (2014) Synchronisation of ovulation for management of reproduction in dairy cows. Animal 8(Suppl 1):151–159PubMedCrossRefGoogle Scholar
  10. Bó GA, de la Mata JJ, Baruselli PS, Menchaca A (2016) Alternative programs for synchronizing and resynchronizing ovulation in beef cattle. Theriogenology 86:388–396PubMedCrossRefGoogle Scholar
  11. Bortolozzo FP, Menegat MB, Mellagi AP, Bernardi ML, Wentz I (2015) New artificial insemination technologies for swine. Reprod Domest Anim 50(Suppl 2):80–84PubMedCrossRefGoogle Scholar
  12. Broekhuijse ML, Soštarić E, Feitsma H, Gadella BM (2012) The value of microscopic semen motility assessment at collection for a commercial artificial insemination center, a retrospective study on factors explaining variation in pig fertility. Theriogenology 77:1466–1479PubMedCrossRefGoogle Scholar
  13. Bromfield JJ, Schjenken JE, Chin PY, Care AS, Jasper MJ, Robertson SA (2014) Maternal tract factors contribute to paternal seminal fluid impact on metabolic phenotype in offspring. Proc Natl Acad Sci U S A 111:2200–2205PubMedPubMedCentralCrossRefGoogle Scholar
  14. Brüssow KP, Jöchle W, Hühn U (1996) Control of ovulation with a GnRH analog in gilts and sows. Theriogenology 46:925–934PubMedCrossRefGoogle Scholar
  15. Cary JA, Madill S, Farnsworth K, Hayna JT, Duoos L, Fahning ML (2004) A comparison of electroejaculation and epididymal sperm collection techniques in stallions. Can Vet J 45:35–41PubMedPubMedCentralGoogle Scholar
  16. Casas E, Vavouri T (2014) Sperm epigenomics: challenges and opportunities. Front Genet 5(330):1–5Google Scholar
  17. Colazo MG, Mapletoft RJ (2014) A review of current timed-AI (TAI) programs for beef and dairy cattle. Can Vet J 55:772–780PubMedPubMedCentralGoogle Scholar
  18. Collins CW, Monfort SL, Vick MM, Wolfe BA, Weiss RB, Keefer CL, Songsasen N (2014) Oral and injectable synthetic progestagens effectively manipulate the estrous cycle in the Przewalski's horse (Equus ferus przewalskii). Anim Reprod Sci 148:42–52PubMedCrossRefGoogle Scholar
  19. Comizzoli P, Crosier AE, Songsasen N, Gunther MS, Howard JG, Wildt DE (2009) Advances in reproductive science for wild carnivore conservation. Reprod Domest Anim 44(Suppl 2):47–52PubMedCrossRefGoogle Scholar
  20. Comizzoli P (2015) Biobanking efforts and new advances in male fertility preservation for rare and endangered species. Asian J Androl 17:640–645PubMedPubMedCentralCrossRefGoogle Scholar
  21. Comizzoli P, Holt WV (2014) Recent advances and prospects in germplasm preservation of rare and endangered species. Adv Exp Med Biol 753:331–356PubMedCrossRefPubMedCentralGoogle Scholar
  22. Cseh S, Faigl V, Amiridis GS (2012) Semen processing and artificial insemination in health management of small ruminants. Anim Reprod Sci 130:187–192PubMedCrossRefPubMedCentralGoogle Scholar
  23. de Graaf SP, Evans G, Maxwell WM, Downing JA, O'Brien JK (2007) Successful low dose insemination of flow cytometrically sorted ram spermatozoa in sheep. Reprod Domest Anim 42:648–653PubMedCrossRefGoogle Scholar
  24. del Olmo D, Parrilla I, Sanchez-Osorio J, Gomis J, Angel MA, Tarantini T, Gil MA, Cuello C, Vazquez JL, Roca J, Vaquez JM, Martinez EA (2014) Successful laparoscopic insemination with a very low number of flow cytometrically sorted boar sperm in field conditions. Theriogenology 81(2):315–320PubMedCrossRefGoogle Scholar
  25. De Rensis F, Kirkwood RN (2016) Control of estrus and ovulation: fertility to timed insemination of gilts and sows. Theriogenology 86:1460–1466PubMedCrossRefGoogle Scholar
  26. Di Caprio G, Ferrara MA, Miccio L, Merola F, Memmolo P, Ferraro P, Coppola G (2015) Holographic imaging of unlabelled sperm cells for semen analysis: a review. J Biophotonics 8:779–789PubMedCrossRefGoogle Scholar
  27. Diniz DB, Lopes MS, Broekhuijse ML, Lopes PS, Harlizius B, Guimarães SE, Duijvesteijn N, Knol EF, Silva F (2014) A genome-wide association study reveals a novel candidate gene for sperm motility in pigs. Anim Reprod Sci 151:201–207PubMedCrossRefGoogle Scholar
  28. Durrant BS (2009) The importance and potential of artificial insemination in CANDES (companion animals, non-domestic, endangered species). Theriogenology 71:113–122PubMedCrossRefGoogle Scholar
  29. Drobnis EZ, Crowe LM, Berger T, Anchordoguy TJ, Overstreet JW, Crowe JH (1993) Cold shock damage is due to lipid phase transitions in cell membranes: a demonstration using sperm as a model. J Exp Zool 265:432–437PubMedCrossRefPubMedCentralGoogle Scholar
  30. Ehling C, Rath D, Struckmann C, Frenzel A, Schindler L, Niemann H (2006) Utilization of frozen-thawed epididymal ram semen to preserve genetic diversity in Scrapie susceptible sheep breeds. Theriogenology 66:2160–2164PubMedCrossRefPubMedCentralGoogle Scholar
  31. Ferraz MAMM, Henning HHW, Stout TAE, Vos PLAM, Gadella BM (2017) Designing 3-dimensional in vitro oviduct culture systems to study mammalian fertilization and embryo production. Ann Biomed Eng 45:1731–1744 Erratum in: Ann Biomed Eng. 2016 Nov 28PubMedCrossRefPubMedCentralGoogle Scholar
  32. Fricke PM, Carvalho PD, Giordano JO, Valenza A, Lopes G Jr, Amundson MC (2014) Expression and detection of estrus in dairy cows: the role of new technologies. Animal 8(Suppl 1):134–343PubMedCrossRefPubMedCentralGoogle Scholar
  33. Gapp K, Jawaid A, Sarkies P, Bohacek J, Pelczar P, Prados J, Farinelli L, Miska E, Mansuy IM (2014) Implication of sperm RNAs in transgenerational inheritance of the effects of early trauma in mice. Nat Neurosci 17:667–669PubMedPubMedCentralCrossRefGoogle Scholar
  34. Gibb Z, Aitken RJ (2016) The impact of sperm metabolism during in vitro storage: the stallion as a model. Biomed Res Int 2016:9380609PubMedPubMedCentralCrossRefGoogle Scholar
  35. Gil L, Olaciregui M, Luño V, Malo C, González N, Martínez F (2014) Current status of freeze-drying technology to preserve domestic animals sperm. Reprod Domest Anim 49(Suppl 4):72–81PubMedCrossRefGoogle Scholar
  36. Gonzalez-Peña D, Knox RV, Pettigrew J, Rodriguez-Zas SL (2014) Impact of pig insemination technique and semen preparation on profitability. J Anim Sci 92:72–84PubMedCrossRefPubMedCentralGoogle Scholar
  37. Gottschalk M, Metzger J, Martinsson G, Sieme H, Distl O (2016) Genome-wide association study for semen quality traits in German Warmblood stallions. Anim Reprod Sci 171:81–86PubMedCrossRefPubMedCentralGoogle Scholar
  38. Graham LH, Byers AP, Armstrong DL, Loskutoff NM, Swanson WF, Wildt DE, Brown JL (2006) Natural and gonadotropin-induced ovarian activity in tigers (Panthera tigris) assessed by fecal steroid analyses. Gen Comp Endocrinol 147:362–370PubMedCrossRefGoogle Scholar
  39. Hemberg E, Lundeheim N, Einarsson S (2006) Successful timing of ovulation using deslorelin (Ovuplant) is labour-saving in mares aimed for single ai with frozen semen. Reprod Domest Anim 41:535–537PubMedCrossRefPubMedCentralGoogle Scholar
  40. Hering DM, Olenski K, Kaminski S (2014a) Genome-wide association study for poor sperm motility in Holstein-Friesian bulls. Anim Reprod Sci 146:89–97PubMedCrossRefGoogle Scholar
  41. Hering DM, Oleński K, Ruść A, Kaminski S (2014b) Genome-wide association study for semen volume and total number of sperm in Holstein-Friesian bulls. Anim Reprod Sci 151:126–130PubMedCrossRefPubMedCentralGoogle Scholar
  42. Hermes R, Göritz F, Saragusty J, Sós E, Molnar V, Reid CE, Schwarzenberger F, Hildebrandt TB (2009) First successful artificial insemination with frozen-thawed semen in rhinoceros. Theriogenology 71:393–399PubMedCrossRefPubMedCentralGoogle Scholar
  43. Hildebrandt TB, Hermes R, Saragusty J, Potier R, Schwammer HM, Balfanz F, Vielgrader H, Baker B, Bartels P, Göritz F (2012) Enriching the captive elephant population genetic pool through artificial insemination with frozen-thawed semen collected in the wild. Theriogenology 78:1398–1404PubMedCrossRefPubMedCentralGoogle Scholar
  44. Holt WV (2000) Fundamental apsects of sperm cryobiology: the importance of species and individual differences. Theriogenology 53:47–58Google Scholar
  45. Holt WV, Penfold LM (2014) Fundamental and practical aspects of semen cryopreservation. In: Chenoweth P, Lorton SP (eds) Animal andrology. CABI Oxfordshire, UK, pp 76–99Google Scholar
  46. Holtz W, Smidt D (1976) The fertilizing capacity of epididymal spermatozoa in the pig. J Reprod Fertil 46:227–229PubMedCrossRefPubMedCentralGoogle Scholar
  47. Hossain MS, Johannisson A, Wallgren M, Nagy S, Siqueira AP, Rodriguez-Martinez H (2011) Flow cytometry for the assessment of animal sperm integrity and functionality: state of the art. Asian J Androl 13:406–419PubMedPubMedCentralCrossRefGoogle Scholar
  48. Howard JG, Wildt DE (2009) Approaches and efficacy of artificial insemination in felids and mustelids. Theriogenology 71:130–148PubMedCrossRefPubMedCentralGoogle Scholar
  49. Hühn U, Jöchle W, Brüssow KP (1996) Techniques developed for the control of estrus, ovulation and parturition in the east German pig industry: a review. Theriogenology 46:911–924PubMedCrossRefPubMedCentralGoogle Scholar
  50. Hunter RHF (2003) Physiology of the Graafian follicle and ovulation. Cambridge University Press, CambridgeGoogle Scholar
  51. Hunter RHF, Wilmut L (1983) The rate of functional sperm transport into the oviducts of mated cows. Anim Reprod Sci 5:167–173CrossRefGoogle Scholar
  52. Isachenko V, Isachenko E, Montag M, Zaeva V, Krivokharchenko I, Nawroth F, Dessole S, Katkov II, van der Ven H (2005) Clean technique for cryoprotectant-free vitrification of human spermatozoa. Reprod Biomed Online 10:350–354PubMedCrossRefPubMedCentralGoogle Scholar
  53. Isachenko V, Maettner R, Petrunkina AM, Mallmann P, Rahimi G, Sterzik K, Sanchez R, Risopatron J, Damjanoski I, Isachenko E (2011) Cryoprotectant-free vitrification of human spermatozoa in large (up to 0.5 mL) volume: a novel technology. Clin Lab 57:643–650PubMedPubMedCentralGoogle Scholar
  54. Jenkins TG, Carrell DT (2011) The paternal epigenome and embryogenesis: poising mechanisms for development. Asian J Androl 13:76–80PubMedCrossRefPubMedCentralGoogle Scholar
  55. Jöchle W (1975) Current research in coitus-induced ovulation: a review. J Reprod Fertil Suppl 22:165–207Google Scholar
  56. Jöchle W (1994) Control of ovulation in the mare with Ovuplant TM. A short-term release implant (STI) containing the GnRH analogue deslorelin acetate: studies from 1990 to 1994 (a review). J Equine Vet Sci 14:632–644CrossRefGoogle Scholar
  57. Johnson SK, Funston RN, Hall JB, Kesler DJ, Lamb GC, Lauderdale JW, Patterson DJ, Perry GA, Strohbehn DR (2011) Multi-state beef reproduction task force provides science-based recommendations for the application of reproductive technologies. J Anim Sci 89:2950–2954PubMedCrossRefPubMedCentralGoogle Scholar
  58. Johnson AE, Freeman EW, Colgin M, McDonough C, Songsasen N (2014) Induction of ovarian activity and ovulation in an induced ovulator, the maned wolf (Chrysocyon brachyurus), using GnRH agonist and recombinant LH. Theriogenology 82:71–79PubMedCrossRefGoogle Scholar
  59. Keskintepe L, Eroglu A (2015) Freeze-drying of mammalian sperm. Methods Mol Biol 1257:489–497PubMedCrossRefPubMedCentralGoogle Scholar
  60. Kobori Y, Pfanner P, Prins GS, Niederberger C (2016) Novel device for male infertility screening with single-ball lens microscope and smartphone. Fertil Steril 106:574–578PubMedCrossRefPubMedCentralGoogle Scholar
  61. Knox RV (2014) Impact of swine reproductive technologies on pig and global food production. Adv Exp Med Biol 752:131–160PubMedCrossRefGoogle Scholar
  62. Knox RV (2016) Artificial insemination in pigs today. Theriogenology 85:83–93PubMedCrossRefGoogle Scholar
  63. Langendijk P, Soede NM, Bouwman EG, Kemp B (2000) Responsiveness to boar stimuli and change in vulvar reddening in relation to ovulation in weaned sows. J Anim Sci 78:3019–3026PubMedCrossRefGoogle Scholar
  64. Layek SS, Mohanty TK, Kumaresan A, Parks JE (2016) Cryopreservation of bull semen: evolution from egg yolk based to soybean based extenders. Anim Reprod Sci 172:1–9PubMedCrossRefGoogle Scholar
  65. Leahy T, Gadella BM (2011) Sperm surface changes and physiological consequences induced by sperm handling and storage. Reproduction 142:759–778PubMedCrossRefGoogle Scholar
  66. León H, Porras AA, Galina CS, Navarro-Fierro R (1991) Effect of the collection method on semen characteristics of zebu and European type cattle in the tropics. Theriogenology 36:349–355PubMedCrossRefGoogle Scholar
  67. López-Gatius F (2000) Site of semen deposition in cattle: a review. Theriogenology 53:1407–1414PubMedCrossRefPubMedCentralGoogle Scholar
  68. Marco-Jiménez F, Puchades S, Gadea J, Vicente JS, Viudes-de-Castro MP (2005) Effect of semen collection method on pre- and post-thaw Guirra ram spermatozoa. Theriogenology 64:1756–1765PubMedCrossRefGoogle Scholar
  69. Martinez EA, Vazquez JM, Roca J, Lucas X, Gil MA, Parrilla I, Vazquez JL, Day BN (2002) Minimum number of spermatozoa required for normal fertility after deep intrauterine insemination in non-sedated sows. Reproduction 123:163–170PubMedCrossRefPubMedCentralGoogle Scholar
  70. Martinez-Pastor F, Garcia-Macias V, Alvarez M, Chamorro C, Herraez P, de Paz P, Anel L (2006) Comparison of two methods for obtaining spermatozoa from the cauda epididymis of Iberian red deer. Theriogenology 65:471–485PubMedCrossRefPubMedCentralGoogle Scholar
  71. Martínez-Pastor F, Mata-Campuzano M, Alvarez-Rodríguez M, Alvarez M, Anel L, de Paz P (2010) Probes and techniques for sperm evaluation by flow cytometry. Reprod Domest Anim 45(Suppl 2):67–78PubMedCrossRefGoogle Scholar
  72. Mazur P (1963) Kinetics of water loss from cells at subzero temperatures and the likelihood of intracellular freezing. J Gen Physiol 47:347–369PubMedPubMedCentralCrossRefGoogle Scholar
  73. Morris LH, Hunter RHF, Allen WR (2000) Hysteroscopic insemination of small numbers of spermatozoa at the uterotubal junction of preovulatory mares. J Reprod Fertil 118:95–100PubMedCrossRefGoogle Scholar
  74. Morris L, Tiplady C, Allen WR (2002) The in vivo fertility of cauda epididymal spermatozoa in the horse. Theriogenology 58:643–646CrossRefGoogle Scholar
  75. Mottram T (2016) Animal board invited review: precision livestock farming for dairy cows with a focus on oestrus detection. Animal 10:1575–1584PubMedCrossRefGoogle Scholar
  76. National Animal Germplasm Program 2016 (http://nrrc.ars.usda.gov/A-GRIN/main_webpage/ars?record_source=US) Accessed 28 Oct 2016
  77. Okazaki T, Akiyoshi T, Kan M, Mori M, Teshima H, Shimada M (2012) Artificial insemination with seminal plasma improves the reproductive performance of frozen-thawed boar epididymal spermatozoa. J Androl 33:990–998PubMedCrossRefGoogle Scholar
  78. Ortega-Ferrusola C, Anel-López L, Martín-Muñoz P, Ortíz-Rodríguez JM, Gil MC, Alvarez M, de Paz P, Ezquerra LJ, Masot AJ, Redondo E, Anel L, Peña FJ (2017a) Computational flow cytometry reveals that cryopreservation induces spermptosis but subpopulations of spermatozoa may experience capacitation-like changes. Reproduction 153:293–304PubMedCrossRefGoogle Scholar
  79. Ortega-Ferrusola C, Gil MC, Rodríguez-Martínez H, Anel L, Peña FJ, Martín-Muñoz P (2017b) Flow cytometry in Spermatology: a bright future ahead. Reprod Domest Anim 52:921–931PubMedCrossRefGoogle Scholar
  80. Palmer CW (2005) Welfare aspects of theriogenology: investigating alternatives to electroejaculation of bulls. Theriogenology 64:469–479PubMedCrossRefGoogle Scholar
  81. Parks JE, Lynch DV (1992) Lipid composition and thermotropic phase behavior of boar, bull, stallion, and rooster sperm membranes. Cryobiology 29:255–266PubMedCrossRefGoogle Scholar
  82. Peña FJ, Ortega Ferrusola C, Martín Muñoz P (2016) New flow cytometry approaches in equine andrology. Theriogenology 86:366–372PubMedCrossRefGoogle Scholar
  83. Petrunkina AM, Waberski D, Günzel-Apel AR, Töpfer-Petersen E (2007) Determinants of sperm quality and fertility in domestic species. Reproduction 134:3–17PubMedCrossRefGoogle Scholar
  84. Petrunkina AM, Harrison RA (2011) Cytometric solutions in veterinary andrology: developments, advantages, and limitations. Cytometry A 79:338–348PubMedCrossRefGoogle Scholar
  85. Petrunkina AM, Harrison RA (2013) Fluorescence technologies for evaluating male gamete (dys)function. Reprod Domest Anim 48(Suppl 1):11–24PubMedCrossRefGoogle Scholar
  86. Popescu CP, Bonneau M, Tixier M, Bahri I, Boscher J (1984) Reciprocal translocations in pigs. Their detection and consequences on animal performance and economic losses. J Hered 75:448–452PubMedCrossRefGoogle Scholar
  87. Pukazhenthi BS, Wildt DE (2004) Which reproductive technologies are most relevant to studying, managing and conserving wildlife? Reprod Fertil Dev 16:33–46PubMedCrossRefGoogle Scholar
  88. Pursley JR, Mee MO, Wiltbank MC (1995) Synchronization of ovulation in dairy cows using PGF2alpha and GnRH. Theriogenology 44:915–923PubMedCrossRefGoogle Scholar
  89. Rodríguez A, Sanz E, De Mercado E, Gómez E, Martín M, Carrascosa C, Gómez-Fidalgo E, Villagómez DA, Sánchez-Sánchez R (2010) Reproductive consequences of a reciprocal chromosomal translocation in two Duroc boars used to provide semen for artificial insemination. Theriogenology 74:67–74PubMedCrossRefGoogle Scholar
  90. Rodriguez-Martinez H (2014) Semen evaluation and handling: emerging techniques and future development. In: Chenoweth P, Lorton SP (eds) Animal andrology. CABI Oxfordshire, UK, pp 509–549Google Scholar
  91. Roelofs J, López-Gatius F, Hunter RH, van Eerdenburg FJ, Hanzen C (2010) When is a cow in estrus? Clinical and practical aspects. Theriogenology 74:327–344PubMedCrossRefGoogle Scholar
  92. Romano JE (2013) Assisted reproductive techniques in small ruminants. Clin Theriogenol 5:293–310Google Scholar
  93. Romagnoli S, Lopate C (2014) Transcervical artificial insemination in dogs and cats: review of the technique and practical aspects. Reprod Domest Anim 49(Suppl 4):56–63PubMedCrossRefGoogle Scholar
  94. Roser JF, Kiefer BL, Evans JW, Neely DP, Pacheco DA (1979) The development of antibodies to human chorionic gonadotrophin following its repeated injection in the cyclic mare. J Reprod Fertil Suppl 27:173–179Google Scholar
  95. Saacke RG, Dalton JC, Nadir S, Nebel RL, Bame JH (2000) Relationship of seminal traits and insemination time to fertilization rate and embryo quality. Anim Reprod Sci 60-61:663–677Google Scholar
  96. Samper JC, Plough T (2010) Techniques for the insemination of low doses of stallion sperm. Reprod Domest 45(Suppl 2):35–39CrossRefGoogle Scholar
  97. Sarsaifi K, Rosnina Y, Ariff MO, Wahid H, Hani H, Yimer N, Vejayan J, Win Naing S, Abas MO (2013) Effect of semen collection methods on the quality of pre- and post-thawed Bali cattle (Bos javanicus) spermatozoa. Reprod Domest Anim 48:1006–1012PubMedCrossRefGoogle Scholar
  98. Schook MW, Wildt DE, Weiss RB, Wolfe BA, Archibald KE, Pukazhenthi BS (2013) Fundamental studies of the reproductive biology of the endangered persian onager (Equus hemionus onager) result in first wild equid offspring from artificial insemination. Biol Reprod 89(41):1–13Google Scholar
  99. Schmitt DL, Hildebrandt TB (1998) Manual collection and characterization of semen from Asian elephants (Elephas maximus). Anim Reprod Sci 53:309–314PubMedCrossRefGoogle Scholar
  100. Schulze M, Ammon C, Rüdiger K, Jung M, Grobbel M (2015) Analysis of hygienic critical control points in boar semen production. Theriogenology 83:430–437PubMedCrossRefGoogle Scholar
  101. Schulze M, Dathe M, Waberski D, Müller K (2016) Liquid storage of boar semen: current and future perspectives on the use of cationic antimicrobial peptides to replace antibiotics in semen extenders. Theriogenology 85:39–46PubMedCrossRefPubMedCentralGoogle Scholar
  102. Sieme H, Oldenhof H, Wolkers WF (2016) Mode of action of cryoprotectants for sperm preservation. Anim Reprod Sci 169:2–5PubMedCrossRefPubMedCentralGoogle Scholar
  103. Skidmore JA, Morton KM, Billah M (2013) Artificial insemination in dromedary camels. Anim Reprod Sci 136:178–186PubMedCrossRefPubMedCentralGoogle Scholar
  104. Spindler R, Keeley T, Satake N (2014) Applied andrology in endangered, exotic and wildlife species. In: Chenoweth P, Lorton SP (eds) Animal andrology. CABI Oxfordshire, UK, pp 450–473Google Scholar
  105. Squires EL, Moran DM, Farlin ME, Jasko DJ, Keefe TJ, Meyers SA, Figueiredo E, McCue PM, Jochle W (1994) Effect of dose of GnRH analog on ovulation in mares. Theriogenology 41:757–769PubMedCrossRefPubMedCentralGoogle Scholar
  106. Stawicki RJ, McDonnell SM, Giguère S, Turner RM (2016) Pregnancy outcomes using stallion epididymal sperm stored at 5 °C for 24 or 48 hours before harvest. Theriogenology 85:698–702PubMedCrossRefPubMedCentralGoogle Scholar
  107. Stewart KR, Flowers WL, Rampacek GB, Greger DL, Swanson ME, Hafs HD (2010) Endocrine, ovulatory and reproductive characteristics of sows treated with an intravaginal GnRH agonist. Anim Reprod Sci 120:112–119PubMedCrossRefPubMedCentralGoogle Scholar
  108. Su TW, Choi I, Feng J, Huang K, Ozcan A (2016) High-throughput analysis of horse sperms’ 3D swimming patterns using computational on-chip imaging. Anim Reprod Sci 169:45–55PubMedCrossRefGoogle Scholar
  109. Suarez SS, Wu M (2016) Microfluidic devices for the study of sperm migration. Mol Hum Reprod 23(4):227–234Google Scholar
  110. Swanson WF, Horohov DW, Godke RA (1995) Production of exogenous gonadotrophin-neutralizing immunoglobulins in cats after repeated eCG-hCG treatment and relevance for assisted reproduction in felids. J Reprod Fertil 105:35–41PubMedCrossRefPubMedCentralGoogle Scholar
  111. Thomassen R, Farstad W (2009) Artificial insemination in canids: a useful tool in breeding and conservation. Theriogenology 71:190–199PubMedCrossRefGoogle Scholar
  112. Thurston LM, Siggins K, Mileham AJ, Watson PF, Holt WV (2002) Identification of amplified restriction fragment length polymorphism markers linked to genes controlling boar sperm viability following cryopreservation. Biol Reprod 66:545–554PubMedCrossRefGoogle Scholar
  113. Tibary A, Pearson LK, Anouassi A (2014) Applied andrology in camelids. In: Chenoweth P, Lorton SP (eds) Animal andrology. CABI Oxfordshire, UK, pp 418–449Google Scholar
  114. Tseng D, Mudanyali O, Oztoprak C, Isikman SO, Sencan I, Yaglidere O, Ozcan A (2010) Lens free microscopy on a cellphone. Lab Chip 10:1787–1792PubMedPubMedCentralCrossRefGoogle Scholar
  115. United Nations, Department of Economic and Social Affairs, Population Division (2017). World population prospects: the 2017 revision, key findings and advance tables. Working Paper No. ESA/P/WP.241. https://esa.un.org/unpd/wpp/publications/Files/WPP2017_KeyFindings.pdf. Accessed 6 June 2018
  116. Vazquez JM, Roca J, Gil MA, Cuello C, Parrilla I, Caballero I, Vazquez JL, Martínez EA (2008) Low-dose insemination in pigs: problems and possibilities. Reprod Domest Anim 43(Suppl 2):347–354PubMedCrossRefGoogle Scholar
  117. Waberski D, Weitze KF, Gleumes T, Schwarz M, Willmen T, Petzoldt R (1994) Effect of time of insemination relative to ovulation on fertility with liquid and frozen boar semen. Theriogenology 42:831–840PubMedCrossRefGoogle Scholar
  118. Waberski D, Südhoff H, Hahn T, Jungblut PW, Kallweit E, Calvete JJ, Ensslin M, Hoppen HO, Wintergalen N, Weitze KF, Töpfer-Petersen E (1995) Advanced ovulation in gilts by the intrauterine application of a low molecular mass pronase-sensitive fraction of boar seminal plasma. J Reprod Fertil 105:247–252PubMedCrossRefGoogle Scholar
  119. Wakayama T, Yanagimachi R (1998) Development of normal mice from oocytes injected with freeze-dried spermatozoa. Nat Biotechnol 16:639–641PubMedCrossRefPubMedCentralGoogle Scholar
  120. Watson PF (1995) Recent developments and concepts in the cryopreservation of spermatozoa and the assessment of their post-thawing function. Reprod Fertil Dev 7:871–891PubMedCrossRefGoogle Scholar
  121. Wiltbank MC, Pursley JR (2014) The cow as an induced ovulator: timed AI after synchronization of ovulation. Theriogenology 81:170–185PubMedCrossRefGoogle Scholar
  122. Wolkers FW, Oldenhof (eds) (2015) Cryopreservation and freeze-drying protocols, 3rd edn. Springer, New YorkGoogle Scholar
  123. Xiao S, Coppeta JR, Rogers HB, Isenberg BC, Zhu J, Olalekan SA, McKinnon KE, Dokic D, Rashedi AS, Haisenleder DJ, Malpani SS, Arnold-Murray CA, Chen K, Jiang M, Bai L, Nguyen CT, Zhang J, Laronda MM, Hope TJ, Maniar KP, Pavone ME, Avram MJ, Sefton EC, Getsios S, Burdette JE, Kim JJ, Borenstein JT, Woodruff TK (2017) A microfluidic culture model of the human reproductive tract and 28-day menstrual cycle. Nat Commun 28:14584CrossRefGoogle Scholar
  124. Xu ZZ (2014) Application of liquid semen technology improves conception rate of sex-sorted semen in lactating dairy cows. J Dairy Sci 97:7298–7304PubMedCrossRefGoogle Scholar
  125. Zambelli D, Bini C, Cunto M (2015) Endoscopic transcervical catheterization in the domestic cat. Reprod Domest Anim 50:13–16PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Unit for Reproductive Medicine of Clinics/Clinic for Pigs and Small RuminantsUniversity of Veterinary MedicineHannoverGermany

Personalised recommendations