Advertisement

Preservation of Gametes and Embryos

  • Amir Arav
  • Joseph Saragusty
Chapter

Abstract

Cryopreservation is the practical implementation of the scientific field of cryobiology. It was developed particularly over the last two centuries, having major milestones in the field of animal reproduction. Technologies such as directional freezing of sperm and sperm desiccation, as well as oocyte and embryo freezing and vitrification, are discussed and described in this chapter. Hereinafter, we describe the major breakthroughs of the past two centuries and our foresight for the near future.

Keywords

Freezing Vitrification Cryopreservation Oocyte Spermatozoa Fertility Biobanking Directional freezing Animal reproduction Assisted reproductive technologies 

References

  1. Abdalla H, Hirabayashi M, Hochi S (2009a) The ability of freeze-dried bull spermatozoa to induce calcium oscillations and resumption of meiosis. Theriogenology 71:543–552.  https://doi.org/10.1016/j.theriogenology.2008.08.021 CrossRefPubMedGoogle Scholar
  2. Abdalla H, Hirabayashi M, Hochi S (2009b) Demethylation dynamics of the paternal genome in pronuclear-stage bovine zygotes produced by in vitro fertilization and ooplasmic injection of freeze-thawed or freeze-dried spermatozoa. J Reprod Dev 55:433–439.  https://doi.org/10.1262/jrd.20229 CrossRefPubMedGoogle Scholar
  3. Alonso A, Baca Castex C, Ferrante A, Pinto M, Castañeira C, Trasorras V, Gambarotta MC, Losinno L, Miragaya M (2015) In vitro equine embryo production using air-dried spermatozoa, with different activation protocols and culture systems. Andrologia 47:387–394.  https://doi.org/10.1111/and.12273 CrossRefPubMedGoogle Scholar
  4. Arav A (1989) Cryopreservation of oocytes and embryos. DVM Thesis, University of Bologna, Bologna, ItalyGoogle Scholar
  5. Arav A (1992) Vitrification of oocytes and embryos. In: Lauria A, Gandolfi F (eds) New trends in embryo transfer. Portland Press, Cambridge, UK, pp 255–264Google Scholar
  6. Arav A (1999) Device and methods for multigradient directional cooling and warming of biological samples. United States, patent # US 5,873,254 (Assigned to: Interface Multigrad Technology)Google Scholar
  7. Arav A (2003) Large tissue freezing. J Assist Reprod Genet 20:351.  https://doi.org/10.1023/A:1025436228056 CrossRefPubMedGoogle Scholar
  8. Arav A (2012) Directional freezing of reproductive cells, tissues, and organs. In: Nagy ZP, Varghese AC, Agarwal A (eds) Practical manual of in vitro fertilization. Springer, New York, pp 547–550CrossRefGoogle Scholar
  9. Arav A, Gacitua H, Zenou A, Malmakov N, Gootwine E, and Bor A (2000) Cryopreservation of ram semen using various freezing extenders and new freezing device. In: Small ruminant reproduction, satellite of the 14th International Congress on Animal Reproduction, June 30, 2000, Sundens, NorwayGoogle Scholar
  10. Arav A, Gavish Z, Elami A, Silber S, Patrizio P (2007) Ovarian survival 6 years after whole organ cryopreservation and transplantation. Fertil Steril 88:S352 (abstract).  https://doi.org/10.1016/j.fertnstert.2005.02.006 CrossRefGoogle Scholar
  11. Arav A, Natan D (2011) Freeze drying (lyophilization) of red blood cells. J Trauma Acute Care Surg 70:S61–S64.  https://doi.org/10.1097/TA.0b013e31821a6083 CrossRefGoogle Scholar
  12. Arav A, Natan D (2012) Freeze drying of red blood cells: the use of directional freezing and a new radio frequency lyophilization device. Biopreserv Biobank 10:386–394.  https://doi.org/10.1089/bio.2012.0021 CrossRefPubMedGoogle Scholar
  13. Arav A, Natan Y, Levi Setti PE, Leong M, and Patrizio P (2016) Vitrification of oocytes and blastocysts using a fully automated cryopreservation device. In: 32nd Annual Meeting of the European society of human reproduction and embryology, 3–6 July, 2016, Helsinki, Finland. pp. i226–i227Google Scholar
  14. Arav A, Revel A, Nathan Y, Bor A, Gacitua H, Yavin S, Gavish Z, Uri M, Elami A (2005) Oocyte recovery, embryo development and ovarian function after cryopreservation and transplantation of whole sheep ovary. Hum Reprod 20:3554–3559.  https://doi.org/10.1016/j.fertnstert.2005.02.006 CrossRefPubMedGoogle Scholar
  15. Arav A, Rubinsky B, Fletcher G, Seren E (1993) Cryogenic protection of oocytes with antifreeze proteins. Mol Reprod Dev 36:488–493.  https://doi.org/10.1002/mrd.1080360413 CrossRefPubMedGoogle Scholar
  16. Arav A, Rubinsky B, Seren E, Roche JF, Boland MP (1994) The role of thermal hysteresis proteins during cryopreservation of oocytes and embryos. Theriogenology 41:107–112.  https://doi.org/10.1016/S0093-691X(05)80055-X CrossRefGoogle Scholar
  17. Arav A, Saragusty J (2016) Directional freezing of sperm and associated derived technologies. Anim Reprod Sci 169:6–13.  https://doi.org/10.1016/j.anireprosci.2016.02.007 CrossRefPubMedGoogle Scholar
  18. Arav A, Zeron Y, Shturman H, Gacitua H (2002) Successful pregnancies in cows following double freezing of a large volume of semen. Reprod Nutr Dev 42:583–586.  https://doi.org/10.1051/rnd:2002044 CrossRefPubMedGoogle Scholar
  19. Bar M, Bar-Ziv R, Scherf T, Fass D (2006) Efficient production of a folded and functional, highly disulfide-bonded β-helix antifreeze protein in bacteria. Protein Express Purif 48:243–252.  https://doi.org/10.1016/j.pep.2006.01.025 CrossRefGoogle Scholar
  20. Bar Dolev M, Braslavsky I, Davies PL (2016) Ice-binding proteins and their function. Annu Rev Biochem 85:515–542.  https://doi.org/10.1146/annurev-biochem-060815-014546 CrossRefPubMedGoogle Scholar
  21. Beckmann J, Korber C, Rau G, Hubel A, Cravalho EG (1990) Redefining cooling rate in terms of ice front velocity and thermal gradient: first evidence of relevance to freezing injury of lymphocytes. Cryobiology 27:279–287.  https://doi.org/10.1016/0011-2240(90)90027-2 CrossRefPubMedGoogle Scholar
  22. Bhowmick S, Zhu L, McGinnis L, Lawitts J, Nath BD, Toner M, Biggers J (2003) Desiccation tolerance of spermatozoa dried at ambient temperature: production of fetal mice. Biol Reprod 68:1779–1786.  https://doi.org/10.1095/biolreprod.102.009407 CrossRefPubMedGoogle Scholar
  23. Bialy G, Smith VR (1957) Freeze-drying of bovine spermatozoa. J Dairy Sci 40:739–745.  https://doi.org/10.3168/jds.S0022-0302(57)94548-4 CrossRefGoogle Scholar
  24. Bielanski A (2012) A review of the risk of contamination of semen and embryos during cryopreservation and measures to limit cross-contamination during banking to prevent disease transmission in ET practices. Theriogenology 77:467–482.  https://doi.org/10.1016/j.theriogenology.2011.07.043 CrossRefPubMedGoogle Scholar
  25. Bielanski A, Bergeron H, Lau PC, Devenish J (2003) Microbial contamination of embryos and semen during long term banking in liquid nitrogen. Cryobiology 46:146–152.  https://doi.org/10.1016/S0011-2240(03)00020-8 CrossRefPubMedGoogle Scholar
  26. Brower WE, Freund MJ, Baudino MD, Ringwald C (1981) An hypothesis for survival of spermatozoa via encapsulation during plane front freezing. Cryobiology 18:277–291.  https://doi.org/10.1016/0011-2240(81)90099-7 CrossRefPubMedGoogle Scholar
  27. Buchanan SS, Pyatt DW, Carpenter JF (2010) Preservation of differentiation and clonogenic potential of human hematopoietic stem and progenitor cells during lyophilization and ambient storage. PLoS One 5:e12518.  https://doi.org/10.1371/journal.pone.0012518 CrossRefPubMedPubMedCentralGoogle Scholar
  28. Chakraborty N, Chang A, Elmoazzen H, Menze M, Hand S, Toner M (2011) A spin-drying technique for lyopreservation of mammalian cells. Ann Biomed Eng 39:1582–1591.  https://doi.org/10.1007/s10439-011-0253-1 CrossRefPubMedGoogle Scholar
  29. Choi YH, Varner DD, Love CC, Hartman DL, Hinrichs K (2011) Production of live foals via intracytoplasmic injection of lyophilized sperm and sperm extract in the horse. Reproduction 142:529–538.  https://doi.org/10.1530/rep-11-0145 CrossRefPubMedGoogle Scholar
  30. Clark MS, Thorne MAS, Purać J, Grubor-Lajšić G, Kube M, Reinhardt R, Worland MR (2007) Surviving extreme polar winters by desiccation: clues from Arctic springtail (Onychiurus arcticus) EST libraries. BMC Genomics 8:1–12.  https://doi.org/10.1186/1471-2164-8-475 CrossRefGoogle Scholar
  31. Cobo A, Domingo J, Pérez S, Crespo J, Remohí J, Pellicer A (2008) Vitrification: an effective new approach to oocyte banking and preserving fertility in cancer patients. Clin Transl Oncol 10:268–273.  https://doi.org/10.1007/s12094-008-0196-7 CrossRefPubMedGoogle Scholar
  32. Cogent (2013) 'The science.' Available at http://www.cogentuk.com/other-services/sexed-semen/the-science/ [Verified 11 December 2017]
  33. Crowe JH, Carpenter JF, Crowe LM (1998) The role of vitrification in anhydrobiosis. Annu Rev Physiol 60:73–103.  https://doi.org/10.1146/annurev.physiol.60.1.73 CrossRefPubMedGoogle Scholar
  34. Crowe JH, Crowe LM, Chapman D (1984) Preservation of membranes in anhydrobiotic organisms: the role of trehalose. Science 223:701–703.  https://doi.org/10.1126/science.223.4637.701 CrossRefPubMedGoogle Scholar
  35. Crowe JH, Crowe LM, Wolkers WF, Oliver AE, Ma X, Auh J-H, Tang M, Zhu S, Norris J, Tablin F (2005) Stabilization of dry mammalian cells: lessons from nature. Integr Comp Biol 45:810–820.  https://doi.org/10.1093/icb/45.5.810 CrossRefPubMedGoogle Scholar
  36. Crowe JH, Hoekstra FA, Crowe LM (1992) Anhydrobiosis. Annu Rev Physiol 54:579–599.  https://doi.org/10.1146/annurev.ph.54.030192.003051 CrossRefPubMedGoogle Scholar
  37. Crowe JH, Leslie SB, Crowe LM (1994) Is vitrification sufficient to preserve liposomes during freeze-drying? Cryobiology 31:355–366.  https://doi.org/10.1006/cryo.1994.1043 CrossRefPubMedGoogle Scholar
  38. Czarny NA, Harris MS, De Iuliis GN, Rodger JC (2009) Acrosomal integrity, viability, and DNA damage of sperm from dasyurid marsupials after freezing or freeze drying. Theriogenology 72:817–825.  https://doi.org/10.1016/j.theriogenology.2009.05.018 CrossRefPubMedGoogle Scholar
  39. Das ZC, Gupta MK, Uhm SJ, Lee HT (2010) Lyophilized somatic cells direct embryonic development after whole cell intracytoplasmic injection into pig oocytes. Cryobiology 61:220–224.  https://doi.org/10.1016/j.cryobiol.2010.07.007 CrossRefPubMedGoogle Scholar
  40. Drobnis EZ, Crowe LM, Berger T, Anchordoguy TJ, Overstreet JW, Crowe JH (1993) Cold shock damage is due to lipid phase transitions in cell membranes: a demonstration using sperm as a model. J Exp Zool 265:432–437.  https://doi.org/10.1002/jez.1402650413 CrossRefPubMedGoogle Scholar
  41. Duman JG (1982) Insect antifreezes and ice-nucleating agents. Cryobiology 19:613–627.  https://doi.org/10.1016/0011-2240(82)90191-2 CrossRefPubMedGoogle Scholar
  42. Elami A, Gavish Z, Korach A, Houminer E, Schneider A, Schwalb H, Arav A (2008) Successful restoration of function of frozen and thawed isolated rat hearts. J Thorac Cardiovasc Surg 135:666–672.e1.  https://doi.org/10.1016/j.jtcvs.2007.08.056 CrossRefPubMedGoogle Scholar
  43. Furukawa Y, Inohara N, Yokoyama E (2005) Growth patterns and interfacial kinetic supercooling at ice/water interfaces at which anti-freeze glycoprotein molecules are adsorbed. J Cryst Growth 275:167–174.  https://doi.org/10.1016/j.jcrysgro.2004.10.085 CrossRefGoogle Scholar
  44. Gacitua H, Arav A (2005) Successful pregnancies with directional freezing of large volume buck semen. Theriogenology 63:931–938.  https://doi.org/10.1016/j.theriogenology.2004.05.012 CrossRefPubMedGoogle Scholar
  45. Gacitua H, Pettit MT, Saragusty J, Arav A (2006) Directional freezing of large volume equine semen. Reprod Domest Anim 41:318 (abstract).  https://doi.org/10.1111/j.1439-0531.2006.00728_3.x CrossRefGoogle Scholar
  46. Gao D, Watson PF, He L, Yu J, Critser J (2002) Development of a directional solidification device for cell cryopreservation. Cell Preserv Technol 1:231–238.  https://doi.org/10.1089/15383440260682062 CrossRefGoogle Scholar
  47. García A, Gil L, Malo C, Martínez F, Kershaw-Young C, de Blas I (2014) Effect of different disaccharides on the integrity and fertilising ability of freeze-dried boar spermatozoa: a preliminary study. Cryo Lett 35:277–285Google Scholar
  48. Gavish Z, Ben-Haim M, Arav A (2008) Cryopreservation of whole murine and porcine livers. Rejuv Res 11:765–772.  https://doi.org/10.1089/rej.2008.0706 CrossRefGoogle Scholar
  49. Gavish Z, Dekel I, Shneorson O, Gacitua H, and Arav A (2004a) Cryopreservation of sperm and whole ovaries 24 hours post-mortem. In: Israel Fertility Association Congress, 12–13 May, 2004, Tel Aviv, Israel, p. 64 (abstract)Google Scholar
  50. Gavish Z, Dekel I, Shneorson O, Gacitua H, and Arav A (2004b) Directional freezing of wild gazelle sperm and whole ovaries. In: Forty-First Annual Meeting of the Society for Cryobiology in association with the Japanese Societies & Associations for Cryobiology, Cryopreservation and Cryomedicine, and the Chinese Cryobiological Society', Beijing, China, p. 314 (abstract)Google Scholar
  51. Gianaroli L, Magli MC, Stanghellini I, Crippa A, Crivello AM, Pescatori ES, Ferraretti AP (2012) DNA integrity is maintained after freeze-drying of human spermatozoa. Fertil Steril 97:1067–1073.  https://doi.org/10.1016/j.fertnstert.2012.02.014 CrossRefPubMedGoogle Scholar
  52. Goodrich RP, Sowemimo-Coker SO, Zerez CR, Tanaka KR (1992) Preservation of metabolic activity in lyophilized human erythrocytes. Proc Nat Acad Sci USA 89:967–971.  https://doi.org/10.1073/pnas.89.3.967 CrossRefPubMedGoogle Scholar
  53. Goyal K, Walton LJ, Browne JA, Burnell AM, Tunnacliffe A (2005) Molecular anhydrobiology: identifying molecules implicated in invertebrate anhydrobiosis. Integr Comp Biol 45:702–709.  https://doi.org/10.1093/icb/45.5.702 CrossRefPubMedGoogle Scholar
  54. Graves-Herring JE, Wildt DE, Comizzoli P (2013) Retention of structure and function of the cat germinal vesicle after air-drying and storage at supra-zero temperature. Biol Reprod 88(139):1–7.  https://doi.org/10.1095/biolreprod.113.108472 CrossRefGoogle Scholar
  55. Griffith M, Ala P, Yang DSC, Hon W-C, Moffatt BA (1992) Antifreeze protein produced endogenously in winter rye leaves. Plant Physiol 100:593–596CrossRefPubMedPubMedCentralGoogle Scholar
  56. Guo N, Puhlev I, Brown DR, Mansbridge J, Levine F (2000) Trehalose expression confers desiccation tolerance on human cells. Nat Biotechnol 18:168–171.  https://doi.org/10.1038/72616 CrossRefPubMedGoogle Scholar
  57. Hand SC, Menze MA, Toner M, Boswell L, Moore D (2011) LEA proteins during water stress: not just for plants anymore. Annu Rev Physiol 73:115–134.  https://doi.org/10.1146/annurev-physiol-012110-142203 CrossRefPubMedGoogle Scholar
  58. Hara H, Abdalla H, Morita H, Kuwayama M, Hirabayashi M, Hochi S (2011) Procedure for bovine ICSI, not sperm freeze-drying, impairs the function of the microtubule-organizing center. J Reprod Dev 57:428–432.  https://doi.org/10.1262/jrd.10-167N CrossRefPubMedGoogle Scholar
  59. Hara H, Tagiri M, Hirabayashi M, Hochi S (2013) Effect of cake collapse on the integrity of freeze-dried bull spermatozoa. Reprod Fertil Dev 26:144 (Abstract).  https://doi.org/10.1071/RDv26n1Ab60 CrossRefGoogle Scholar
  60. Hayakawa H, Yamazaki T, Oshi M, Hoshino M, Dochi O, Koyama H (2007) Cryopreservation of conventional and sex-sorted bull sperm using a directional freezing method. Reprod Fertil Dev 19:176–177 (abstract).  https://doi.org/10.1071/RDv19n1Ab118 CrossRefGoogle Scholar
  61. Hayashi K, Ohta H, Kurimoto K, Aramaki S, Saitou M (2011) Reconstitution of the mouse germ cell specification pathway in culture by pluripotent stem cells. Cell 146:519–532.  https://doi.org/10.1016/j.cell.2011.06.052 CrossRefPubMedGoogle Scholar
  62. Hayashi K, Saitou M (2013) Generation of eggs from mouse embryonic stem cells and induced pluripotent stem cells. Nat Protoc 8:1513–1524.  https://doi.org/10.1038/nprot.2013.090 CrossRefPubMedGoogle Scholar
  63. Hendriks S, Dancet EAF, van Pelt AMM, Hamer G, Repping S (2015) Artificial gametes: a systematic review of biological progress towards clinical application. Hum Reprod Update 21:285–296.  https://doi.org/10.1093/humupd/dmv001 CrossRefPubMedGoogle Scholar
  64. Hermes R, Arav A, Saragusty J, Göritz F, Pettit M, Blottner S, Flach E, Eshkar G, Boardman W, and Hildebrandt TB (2003) Cryopreservation of Asian elephant spermatozoa using directional freezing. In: Annual meeting of the American Association of Zoo Veterinarians, 4.10.-10.10.2003, Minneapolis, MN, USA. (Ed. C Kirk-Baer), p. 264 (abstract). (Yulee, FL, USA)Google Scholar
  65. Hermes R, Göritz F, Saragusty J, Sos E, Molnar V, Reid CE, Schwarzenberger F, Hildebrandt TB (2009) First successful artificial insemination with frozen-thawed semen in rhinoceros. Theriogenology 71:393–399.  https://doi.org/10.1016/j.theriogenology.2008.10.008 CrossRefPubMedGoogle Scholar
  66. Hermes R, Saragusty J, Göritz F, Bartels P, Potier R, Baker B, Streich WJ, Hildebrandt TB (2013) Freezing African elephant semen as a new population management tool. PLoS One 8:e57616.  https://doi.org/10.1371/journal.pone.0057616 CrossRefPubMedPubMedCentralGoogle Scholar
  67. Hikabe O, Hamazaki N, Nagamatsu G, Obata Y, Hirao Y, Hamada N, Shimamoto S, Imamura T, Nakashima K, Saitou M, Hayashi K (2016) Reconstitution in vitro of the entire cycle of the mouse female germ line. Nature 539(7628):299–303 In Press.  https://doi.org/10.1038/nature20104 CrossRefPubMedGoogle Scholar
  68. Hildebrandt TB, Hermes R, Saragusty J, Potier R, Schwammer HM, Balfanz F, Vielgrader HD, Baker B, Bartels P, Göritz F (2012) Enriching the captive elephant population genetic pool through artificial insemination with frozen-thawed semen collected in the wild. Theriogenology 78:1398–1404.  https://doi.org/10.1016/j.theriogenology.2012.06.014 CrossRefPubMedGoogle Scholar
  69. Hildebrandt TB, Roellig K, Goeritz F, Fassbender M, Krieg R, Blottner S, Behr B, Hermes R (2009) Artificial insemination of captive European brown hares (Lepus europaeus PALLAS, 1778) with fresh and cryopreserved semen derived from free-ranging males. Theriogenology 72:1065–1072.  https://doi.org/10.1016/j.theriogenology.2009.06.026 CrossRefPubMedGoogle Scholar
  70. Hirabayashi M, Kato M, Ito J, Hochi S (2005) Viable rat offspring derived from oocytes intracytoplasmically injected with freeze-dried sperm heads. Zygote 13:79–85.  https://doi.org/10.1017/S096719940500300X CrossRefPubMedGoogle Scholar
  71. Hiramoto Y (1962) Microinjection of the live spermatozoa into sea urchin eggs. Exp Cell Res 27:416–426.  https://doi.org/10.1016/0014-4827(62)90006-X CrossRefPubMedGoogle Scholar
  72. Hoagland E, Pincus GG (1942) Revival of mammalian sperm after immersion in liquid nitrogen. J Genet Physiol 25:337–344CrossRefGoogle Scholar
  73. Hochi S, Watanabe K, Kato M, Hirabayashi M (2008) Live rats resulting from injection of oocytes with spermatozoa freeze-dried and stored for one year. Mol Reprod Dev 75:890–894.  https://doi.org/10.1002/mrd.20825 CrossRefPubMedGoogle Scholar
  74. Hubel A, Cravalho EG, Nunner B, Korber C (1992) Survival of directionally solidified B-lymphoblasts under various crystal growth conditions. Cryobiology 29:183–198.  https://doi.org/10.1016/0011-2240(92)90019-X CrossRefPubMedGoogle Scholar
  75. Hubel A, Darr TB, Chang A, Dantzig J (2007) Cell partitioning during the directional solidification of trehalose solutions. Cryobiology 55:182–188.  https://doi.org/10.1016/j.cryobiol.2007.07.002 CrossRefPubMedGoogle Scholar
  76. Ishiguro H, Koike K (1998) Three-dimensional behavior of ice crystals and biological cells during freezing of cell suspensions. Ann N Y Acad Sci 858:235–244CrossRefPubMedGoogle Scholar
  77. Ishiguro H, Rubinsky B (1994) Mechanical interactions between ice crystals and red blood cells during directional solidification. Cryobiology 31:483–500.  https://doi.org/10.1006/cryo.1994.1059 CrossRefPubMedGoogle Scholar
  78. Jahnel F (1938) Resistance of human spermatozoa to deep cold. Klin Wochenschr 17:1273–1274CrossRefGoogle Scholar
  79. Kaneko T, Ito H, Sakamoto H, Onuma M, Inoue-Murayama M (2014) Sperm preservation by freeze-drying for the conservation of wild animals. PLoS One 9:e113381.  https://doi.org/10.1371/journal.pone.0113381 CrossRefPubMedPubMedCentralGoogle Scholar
  80. Kaneko T, Nakagata N (2005) Relation between storage temperature and fertilizing ability of freeze-dried mouse spermatozoa. Comp Med 55:140–144PubMedGoogle Scholar
  81. Kaneko T, Nakagata N (2006) Improvement in the long-term stability of freeze-dried mouse spermatozoa by adding of a chelating agent. Cryobiology 53:279–282.  https://doi.org/10.1016/j.cryobiol.2006.06.004 CrossRefPubMedGoogle Scholar
  82. Kaneko T, Serikawa T (2012a) Long-term preservation of freeze-dried mouse spermatozoa. Cryobiology 64:211–214.  https://doi.org/10.1016/j.cryobiol.2012.01.010 CrossRefPubMedGoogle Scholar
  83. Kaneko T, Serikawa T (2012b) Successful long-term preservation of rat sperm by freeze-drying. PLoS One 7:e35043.  https://doi.org/10.1371/journal.pone.0035043 CrossRefPubMedPubMedCentralGoogle Scholar
  84. Kaneko T, Whittingham DG, Yanagimachi R (2003) Effect of pH value of freeze-drying solution on the chromosome integrity and developmental ability of mouse spermatozoa. Biol Reprod 68:136–139.  https://doi.org/10.1095/biolreprod.102.008706 CrossRefPubMedGoogle Scholar
  85. Katayose H, Matsuda J, Yanagimachi R (1992) The ability of dehydrated hamster and human sperm nuclei to develop into pronuclei. Biol Reprod 47:277–284.  https://doi.org/10.1095/biolreprod47.2.277 CrossRefPubMedGoogle Scholar
  86. Katkov II, Bolyukh VF, Chernetsov OA, Dudin PI, Grigoriev AY, Isachenko V, Isachenko E, Lulat AG-M, Moskovtsev SI, Petrushko MP, Pinyaev VI, Sokol KM, Sokol YI, Sushko AB, Yakhnenko I (2012) Kinetic vitrification of spermatozoa of vertebrates: what can we learn from nature. In: Katkov II (ed) Current frontiers in cryobiology, vol 1. InTech, Rijeka, Croatia, pp 3–40CrossRefGoogle Scholar
  87. Kawase Y, Araya H, Kamada N, Jishage K, Suzuki H (2005) Possibility of long-term preservation of freeze-dried mouse spermatozoa. Biol Reprod 72:568–573.  https://doi.org/10.1095/biolreprod.104.035279 CrossRefPubMedGoogle Scholar
  88. Kawase Y, Hani T, Kamada N, Jishage K-i, Suzuki H (2007b) Effect of pressure at primary drying of freeze-drying mouse sperm reproduction ability and preservation potential. Reproduction 133:841–846.  https://doi.org/10.1530/rep-06-0170 CrossRefPubMedGoogle Scholar
  89. Kawase Y, Tachibe T, Jishage K, Suzuki H (2007a) Transportation of freeze-dried mouse spermatozoa under different preservation conditions. J Reprod Dev 53:1169–1174CrossRefPubMedGoogle Scholar
  90. Keskintepe L, Pacholczyk G, Machnicka A, Norris K, Curuk MA, Khan I, Brackett BG (2002) Bovine blastocyst development from oocytes injected with freeze-dried spermatozoa. Biol Reprod 67:409–415.  https://doi.org/10.1095/biolreprod67.2.409 CrossRefPubMedGoogle Scholar
  91. Klooster KL, Burruel VR, Meyers SA (2011) Loss of fertilization potential of desiccated rhesus macaque spermatozoa following prolonged storage. Cryobiology 62:161–166.  https://doi.org/10.1016/j.cryobiol.2011.02.002 CrossRefPubMedGoogle Scholar
  92. Knight CA, De Vries AL, Oolman LD (1984) Fish antifreeze protein and the freezing and recrystallization of ice. Nature 308:295–296.  https://doi.org/10.1038/308295a0 CrossRefPubMedGoogle Scholar
  93. Körber C (1988) Phenomena at the advancing ice–liquid interface: solutes, particles and biological cells. Q Rev Biophys 21:229–298.  https://doi.org/10.1017/S0033583500004303 CrossRefPubMedGoogle Scholar
  94. Körber C, Rau G, Cosman MD, Cravalho EG (1985) Interaction of particles and a moving ice-liquid interface. J Cryst Growth 72:649–662.  https://doi.org/10.1016/0022-0248(85)90217-9 CrossRefGoogle Scholar
  95. Körber C, Scheiwe MW (1983) Observations of the non-planar freezing of aqueous salt solutions. J Cryst Growth 61:307–316.  https://doi.org/10.1016/0022-0248(83)90367-6 CrossRefGoogle Scholar
  96. Körber C, Scheiwe MW, Wollhöver K (1983) Solute polarization during planar freezing of aqueous salt solutions. Int J Heat Mass Transf 26:1241–1253.  https://doi.org/10.1016/S0017-9310(83)80179-3 CrossRefGoogle Scholar
  97. Koushafar H, Rubinsky B (1997) Effect of antifreeze proteins on frozen primary prostatic adenocarcinoma cells. Urology 49:421–425.  https://doi.org/10.1016/S0090-4295(96)00572-9 CrossRefPubMedGoogle Scholar
  98. Kusakabe H, Szczygiel MA, Whittingham DG, Yanagimachi R (2001) Maintenance of genetic integrity in frozen and freeze-dried mouse spermatozoa. Proc Nat Acad Sci USA 98:13501–13506.  https://doi.org/10.1073/pnas.241517598 CrossRefPubMedGoogle Scholar
  99. Kusakabe H, Tateno H (2011) Characterization of chromosomal damage accumulated in freeze-dried mouse spermatozoa preserved under ambient and heat stress conditions. Mutagenesis 26:447–453.  https://doi.org/10.1093/mutage/ger003 CrossRefPubMedGoogle Scholar
  100. Kusakabe H, Tateno H (2017) Prevention of high-temperature-induced chromosome damage in mouse spermatozoa freeze-dried using Ca2+ chelator-containing buffer alkalinized with NaOH or KOH. Cryobiology 79:71–77.  https://doi.org/10.1016/j.cryobiol.2017.08.007 CrossRefPubMedGoogle Scholar
  101. Kusakabe H, Yanagimachi R, Kamiguchi Y (2008) Mouse and human spermatozoa can be freeze-dried without damaging their chromosomes. Hum Reprod 23:233–239.  https://doi.org/10.1093/humrep/dem252 CrossRefPubMedGoogle Scholar
  102. Kuwayama M (2007) Highly efficient vitrification for cryopreservation of human oocytes and embryos: the Cryotop method. Theriogenology 67:73–80.  https://doi.org/10.1016/j.theriogenology.2006.09.014 CrossRefPubMedGoogle Scholar
  103. Kwon IK, Park KE, Niwa K (2004) Activation, pronuclear formation, and development in vitro of pig oocytes following intracytoplasmic injection of freeze-dried spermatozoa. Biol Reprod 71:1430–1436.  https://doi.org/10.1095/biolreprod.104.031260 CrossRefPubMedGoogle Scholar
  104. Larson EV, Graham EF (1976) Freeze-drying of spermatozoa. Dev Biol Stand 36:343–348PubMedGoogle Scholar
  105. Lee K-B, Niwa K (2006) Fertilization and development in vitro of bovine oocytes following intracytoplasmic injection of heat-dried sperm heads. Biol Reprod 74:146–152.  https://doi.org/10.1095/biolreprod.105.044743 CrossRefPubMedGoogle Scholar
  106. Lee K-B, Park K-E, Kwon I-K, Tripurani SK, Kim KJ, Lee JH, Niwa K, Kim MK (2013) Develop to term rat oocytes injected with heat-dried sperm heads. PLoS One 8:e78260.  https://doi.org/10.1371/journal.pone.0078260 CrossRefPubMedPubMedCentralGoogle Scholar
  107. Leslie SB, Israeli E, Lighthart B, Crowe JH, Crowe LM (1995) Trehalose and sucrose protect both membranes and proteins in intact bacteria during drying. Appl Environ Microbiol 61:3592–3597PubMedPubMedCentralGoogle Scholar
  108. Li MW, Biggers JD, Elmoazzen HY, Toner M, McGinnis L, Lloyd KCK (2007) Long-term storage of mouse spermatozoa after evaporative drying. Reproduction 133:919–929.  https://doi.org/10.1530/rep-06-0096 CrossRefPubMedGoogle Scholar
  109. Li S, Chakraborty N, Borcar A, Menze MA, Toner M, Hand SC (2012) Late embryogenesis abundant proteins protect human hepatoma cells during acute desiccation. Proc Nat Acad Sci USA 109:20859–20864.  https://doi.org/10.1073/pnas.1214893109 CrossRefPubMedGoogle Scholar
  110. Li X-X, Diao Y-F, Wei H-J, Wang S-Y, Cao X-Y, Zhang Y-F, Chang T, Li D-L, Kim MK, Xu B (2017) Tauroursodeoxycholic acid enhances the development of porcine embryos derived from in vitro-matured oocytes and evaporatively dried spermatozoa. Sci Rep 7:6773.  https://doi.org/10.1038/s41598-017-07185-w CrossRefPubMedPubMedCentralGoogle Scholar
  111. Li Y, Wang H, Tingrui P (2013) Intracellular ice formation (IIF) during freeze-thaw repetitions. Int J Heat Mass Transf 64:436–443.  https://doi.org/10.1016/j.ijheatmasstransfer.2013.04.036 CrossRefGoogle Scholar
  112. Li Y, Wang F, Wang H (2010) Cell death along single microfluidic channel after freeze-thaw treatments. Biomicrofluidics 4:1–10.  https://doi.org/10.1063/1.3324869 CrossRefGoogle Scholar
  113. Lipp G, Korber C, Englich S, Hartmann U, Rau G (1987) Investigation of the behavior of dissolved gases during freezing. Cryobiology 24:489–503.  https://doi.org/10.1016/0011-2240(87)90053-8 CrossRefGoogle Scholar
  114. Liu JL, Kusakabe H, Chang CC, Suzuki H, Schmidt DW, Julian M, Pfeffer R, Bormann CL, Tian XC, Yanagimachi R, Yang X (2004) Freeze-dried sperm fertilization leads to full-term development in rabbits. Biol Reprod 70:1776–1781.  https://doi.org/10.1095/​biolreprod.103.025957 CrossRefPubMedGoogle Scholar
  115. Liu J, Lee GY, Lawitts JA, Toner M, Biggers JD (2012) Preservation of mouse sperm by convective drying and storing in 3-O-methyl-D-glucose. PLoS One 7:e29924.  https://doi.org/10.1371/journal.pone.0029924 CrossRefPubMedPubMedCentralGoogle Scholar
  116. Liu J, Lee GY, Lawitts JA, Toner M, Biggers JD (2014) Live pups from evaporatively dried mouse sperm stored at ambient temperature for up to 2 years. PLoS One 9:e99809.  https://doi.org/10.1371/journal.pone.0099809 CrossRefPubMedPubMedCentralGoogle Scholar
  117. Loi P, Matsukawa K, Ptak G, Clinton M, Fulka J Jr, Natan Y, Arav A (2008) Freeze-dried somatic cells direct embryonic development after nuclear transfer. PLoS One 3:e2978.  https://doi.org/10.1371/journal.pone.0002978 CrossRefPubMedPubMedCentralGoogle Scholar
  118. Loomis SH, O'Dell SJ, Crowe JH (1979) Anhydrobiosis in nematodes: inhibition of the browning reaction of reducing sugars with dry proteins. J Exp Zool 208:355–360.  https://doi.org/10.1002/jez.1402080312 CrossRefGoogle Scholar
  119. Luyet B (1937) The vitrification of organic colloids and protoplasm. Biodynamica 1:1–14Google Scholar
  120. Luyet BJ, Gehenio PM (1940) Life and death at low temperatures. Biodynamica, Normandy, MO, p 335Google Scholar
  121. Luyet BJ, Hodapp EL (1938) Revival of frog's spermatozoa vitrified in liquid air. Exp Biol Med 39:433–434.  https://doi.org/10.3181/00379727-39-10229p CrossRefGoogle Scholar
  122. Maffei S, Hanenberg M, Pennarossa G, Silva JRV, Brevini TAL, Arav A, Gandolfi F (2013b) Direct comparative analysis of conventional and directional freezing for the cryopreservation of whole ovaries. Fertil Steril 100:1122–1131.  https://doi.org/10.1016/j.fertnstert.2013.06.003 CrossRefPubMedGoogle Scholar
  123. Maffei S, Pennarossa G, Brevini TAL, Arav A, Gandolfi F (2013a) Beneficial effect of directional freezing on in vitro viability of cryopreserved sheep whole ovaries and ovarian cortical slices. Hum Reprod 29:114–124.  https://doi.org/10.1093/humrep/det377 CrossRefPubMedGoogle Scholar
  124. Magalhães LCO, Melo-Oña CM, Sudano MJ, Paschoal DM, Crocomo LF, Ackermann CL, Villaverde AISB, Landim-Alvarenga FC, Lopes MD (2012) An easy-to-perform method to assess viability of feline freeze-dried sperm. Reprod Fertil Dev 25:182 (abstract).  https://doi.org/10.1071/RDv25n1Ab69 CrossRefGoogle Scholar
  125. Martins CF, Bao SN, Dode MN, Correa GA, Rumpf R (2007) Effects of freeze-drying on cytology, ultrastructure, DNA fragmentation, and fertilizing ability of bovine sperm. Theriogenology 67:1307–1315.  https://doi.org/10.1016/j.theriogenology.2007.01.015 CrossRefPubMedGoogle Scholar
  126. Matsumoto S, Matsusita M, Morita T, Kamachi H, Tsukiyama S, Furukawa Y, Koshida S, Tachibana Y, Nishimura S-i, Todo S (2006) Effects of synthetic antifreeze glycoprotein analogue on islet cell survival and function during cryopreservation. Cryobiology 52:90–98.  https://doi.org/10.1016/j.cryobiol.2005.10.010 CrossRefPubMedGoogle Scholar
  127. Mazur P, Leibo SP, Chu EH (1972) A two-factor hypothesis of freezing injury. Evidence from Chinese hamster tissue-culture cells. Exp Cell Res 71:345–355.  https://doi.org/10.1016/0014-4827(72)90303-5 CrossRefPubMedGoogle Scholar
  128. McGinnis LK, Zhu L, Lawitts JA, Bhowmick S, Toner M, Biggers JD (2005) Mouse sperm desiccated and stored in trehalose medium without freezing. Biol Reprod 73:627–633.  https://doi.org/10.1095/biolreprod.105.042291 CrossRefPubMedGoogle Scholar
  129. Men NT, Kikuchi K, Furusawa T, Dang-Nguyen TQ, Nakai M, Fukuda A, Noguchi J, Kaneko H, Viet Linh N, Xuan Nguyen B, Tajima A (2016) Expression of DNA repair genes in porcine oocytes before and after fertilization by ICSI using freeze-dried sperm. Anim Sci J 87:1325–1333.  https://doi.org/10.1111/asj.12554 CrossRefPubMedGoogle Scholar
  130. Men NT, Kikuchi K, Nakai M, Fukuda A, Tanihara F, Noguchi J, Kaneko H, Linh NV, Nguyen BX, Nagai T, Tajima A (2013) Effect of trehalose on DNA integrity of freeze-dried boar sperm, fertilization, and embryo development after intracytoplasmic sperm injection. Theriogenology 80:1033–1044.  https://doi.org/10.1016/j.theriogenology.2013.08.001 CrossRefPubMedGoogle Scholar
  131. Meng X, Gu X, Wu C, Dai J, Zhang T, Xie Y, Wu Z, Liu L, Ma H, Zhang D (2010) Effect of trehalose on the freeze-dried boar spermatozoa. Sheng Wu Gong Cheng Xue Bao 26:1143–1149 (abstract). [In Chinese]PubMedGoogle Scholar
  132. Meryman HT, Kafig E (1959) Survival of spermatozoa following drying. Nature 184:470–471.  https://doi.org/10.1038/184470a0 CrossRefGoogle Scholar
  133. Meryman HT, Kafig E (1963) Special article: freeze-drying of bovine spermatozoa. J Reprod Fertil 5:87–94.  https://doi.org/10.1530/jrf.0.0050087 CrossRefPubMedGoogle Scholar
  134. Meyers SA (2006) Dry storage of sperm: applications in primates and domestic animals. Reprod Fertil Dev 18:1–5.  https://doi.org/10.1071/RD05116 CrossRefPubMedGoogle Scholar
  135. Meyers SA, Li MW, Enders AC, Overstreet JW (2009) Rhesus macaque blastocysts resulting from intracytoplasmic sperm injection of vacuum-dried spermatozoa. J Med Primatol 38:310–317.  https://doi.org/10.1111/j.1600-0684.2009.00352.x CrossRefPubMedGoogle Scholar
  136. Moisan AE, Leibo SP, Lynn JW, Gómez MC, Pope CE, Dresser BL, Godke RA (2005) Embryonic development of felid oocytes injected with freeze-dried or air-dried spermatozoa. Cryobiology 51:373 (abstract).  https://doi.org/10.1016/j.cryobiol.2005.10.001 CrossRefGoogle Scholar
  137. Molisch H (1982) Investigations into the freezing death of plants. Cryo Lett 3:328–391Google Scholar
  138. Montano GA, Kraemer D, Love CC, Robeck T, O'Brien J (2012) Evaluation of motility, membrane status and DNA integrity of frozen-thawed bottlenose dolphin (Tursiops truncatus) spermatozoa after sex-sorting and recryopreservation. Reproduction 143:799–813.  https://doi.org/10.1530/rep-11-0490 CrossRefPubMedGoogle Scholar
  139. Mousson A (1858) Einige Thatsachen betreffend das Schmelzen und Gefrieren des Wassers. Annalen der Physik und Chemie 181:161–174.  https://doi.org/10.1002/andp.18581811002 [In German]CrossRefGoogle Scholar
  140. Muneto T, Horiuchi T (2011) Full-term development of hamster embryos produced by injecting freeze-dried spermatozoa into oocytes. J Mamm Ova Res 28:32–39.  https://doi.org/10.1274/jmor.28.32 CrossRefGoogle Scholar
  141. Nakai M, Kashiwazaki N, Takizawa A, Maedomari N, Ozawa M, Noguchi J, Kaneko H, Shino M, Kikuchi K (2007) Effects of chelating agents during freeze-drying of boar spermatozoa on DNA fragmentation and on developmental ability in vitro and in vivo after intracytoplasmic sperm head injection. Zygote 15:15–24.  https://doi.org/10.1017/S0967199406003935 CrossRefPubMedGoogle Scholar
  142. Natan D, Nagler A, Arav A (2009) Freeze-drying of mononuclear cells derived from umbilical cord blood followed by colony formation. PLoS One 4:e5240.  https://doi.org/10.1371/journal.pone.0005240 CrossRefPubMedPubMedCentralGoogle Scholar
  143. Nei T, Nagase H (1961) Attempts to freeze-dry bull spermatozoa. Low Temp Sci B 19:107–115Google Scholar
  144. O'Brien JK, Robeck TR (2006) Development of sperm sexing and associated assisted reproductive technology for sex preselection of captive bottlenose dolphins (Tursiops truncatus). Reprod Fertil Dev 18:319–329.  https://doi.org/10.1071/RD05108 CrossRefPubMedGoogle Scholar
  145. O'Brien JK, Robeck TR (2010) Preservation of beluga (Delphinapterus leucas) spermatozoa using a trehalose-based cryodiluent and directional freezing technology. Reprod Fertil Dev 22:653–663.  https://doi.org/10.1071/RD09176 CrossRefPubMedGoogle Scholar
  146. O'Brien JK, Robeck TR (2014) Semen characterization, seasonality of production, and in vitro sperm quality after chilled storage and cryopreservation in the king penguin (Aptenodytes patagonicus). Zoo Biol 33:99–109.  https://doi.org/10.1002/zoo.21111 CrossRefPubMedGoogle Scholar
  147. O'Brien JK, Steinman KJ, Montano GA, Love CC, Saiers RL, Robeck TR (2012) Characteristics of high-quality Asian elephant (Elephas maximus) ejaculates and in vitro sperm quality after prolonged chilled storage and directional freezing. Reprod Fertil Dev 25:790–797.  https://doi.org/10.1071/RD12129 CrossRefGoogle Scholar
  148. Olaciregui M, Luño V, Domingo P, González N, Gil L (2017b) In vitro developmental ability of ovine oocytes following intracytoplasmic injection with freeze-dried spermatozoa. Sci Rep 7:1096.  https://doi.org/10.1038/s41598-017-00583-0 CrossRefPubMedPubMedCentralGoogle Scholar
  149. Olaciregui M, Luño V, Gonzalez N, De Blas I, Gil L (2015) Freeze-dried dog sperm: dynamics of DNA integrity. Cryobiology 71:286–290.  https://doi.org/10.1016/j.cryobiol.2015.08.001 CrossRefPubMedGoogle Scholar
  150. Olaciregui M, Luño V, González N, Domingo P, de Blas I, Gil L (2017a) Chelating agents in combination with rosmarinic acid for boar sperm freeze-drying. Reprod Biol 17:193–198.  https://doi.org/10.1016/j.repbio.2017.05.001 CrossRefPubMedGoogle Scholar
  151. Olaciregui M, Luño V, Martí JI, Aramayona J, Gil L (2016) Freeze-dried stallion spermatozoa: evaluation of two chelating agents and comparative analysis of three sperm DNA damage assays. Andrologia 48:900–906.  https://doi.org/10.1111/and.12530 CrossRefPubMedGoogle Scholar
  152. Oldenhof H, Zhang M, Narten K, Bigalk J, Sydykov B, Wolkers WF, Sieme H (2017) Freezing-induced uptake of disaccharides for preservation of chromatin in freeze-dried stallion sperm during accelerated aging. Biol Reprod 97:892–901.  https://doi.org/10.1093/biolre/iox142 CrossRefPubMedGoogle Scholar
  153. Palazzese L, Anzalone DA, Gosálvez´ J, Loi P, Saragusty J (2017) DNA fragmentation of epididymal freeze-dried ram spermatozoa impairs embryo development. Reprod Fertil Dev 30:162 (Abstract).  https://doi.org/10.1071/RDv30n1Ab45 CrossRefGoogle Scholar
  154. Palermo G, Joris H, Devroey P, Van Steirteghem AC (1992) Pregnancies after intracytoplasmic injection of single spermatozoon into an oocyte. Lancet 340:17–18.  https://doi.org/10.1016/0140-6736(92)92425-F CrossRefPubMedGoogle Scholar
  155. Patrick JL, Elliott GD, Comizzoli P (2017) Structural integrity and developmental potential of spermatozoa following microwave-assisted drying in the domestic cat model. Theriogenology 103:36–43.  https://doi.org/10.1016/j.theriogenology.2017.07.037 CrossRefPubMedGoogle Scholar
  156. Perreault SD, Barbee RR, Slott VL (1988) Importance of glutathione in the acquisition and maintenance of sperm nuclear decondensing activity in maturing hamster oocytes. Dev Biol 125:181–186.  https://doi.org/10.1016/0012-1606(88)90070-X CrossRefPubMedGoogle Scholar
  157. Pfaller W, Rovan E, Mairbäurl H (1976) A comparison of the ultrastructure of spray-frozen and freeze-etched or freeze-dried bull and boar spermatozoa with that after chemical fixation. J Reprod Fertil 48:285–290.  https://doi.org/10.1530/jrf.0.0480285 CrossRefPubMedGoogle Scholar
  158. Phillips PH, Lardy HA (1940) A yolk-buffer pabulum for the preservation of bull semen. J Dairy Sci 23:399–404.  https://doi.org/10.3168/jds.S0022-0302(40)95541-2 CrossRefGoogle Scholar
  159. Poleo GA, Godke RR, Tiersch TR (2005) Intracytoplasmic sperm injection using cryopreserved, fixed, and freeze-dried sperm in eggs of Nile tilapia. Mar Biotechnol 7:104–111.  https://doi.org/10.1007/s10126-004-0162-5 CrossRefPubMedGoogle Scholar
  160. Polge C, Smith AU, Parkes AS (1949) Revival of spermatozoa after vitrification and dehydration at low temperatures. Nature 164:666.  https://doi.org/10.1038/164666a0 CrossRefPubMedPubMedCentralGoogle Scholar
  161. Prieto Pablos MT, Saragusty J, Santiago-Moreno J, Stagegaard J, Göritz F, Hildebrandt TB, Hermes R (2015) Cryopreservation of onager (Equus hemionus onager) epididymal spermatozoa. J Zoo Wildl Med 46:517–525.  https://doi.org/10.1638/2014-0243.1 CrossRefGoogle Scholar
  162. Rall WF, Fahy GM (1985) Ice-free cryopreservation of mouse embryos at −196°C by vitrification. Nature 313:573–575.  https://doi.org/10.1038/313573a0 CrossRefPubMedGoogle Scholar
  163. Reid CE, Blottner S, Hildebrandt TB, Göritz F, Hermes R (2006) The effect of potassium, EDTA, cytochalsin D, and xanthurinic acid on the post-freeze/thaw parameters of rhinoceros spermatozoa using an egg-yolk based extender. Reprod Domest Anim 41:28 (abstract).  https://doi.org/10.1111/j.1439-0531.2006.00663.x CrossRefGoogle Scholar
  164. Reid CE, Hermes R, Blottner S, Goeritz F, Wibbelt G, Walzer C, Bryant BR, Portas TJ, Streich WJ, Hildebrandt TB (2009) Split-sample comparison of directional and liquid nitrogen vapour freezing method on post-thaw semen quality in white rhinoceroses (Ceratotherium simum simum and Ceratotherium simum cottoni). Theriogenology 71:275–291.  https://doi.org/10.1016/j.theriogenology.2008.07.009 CrossRefPubMedGoogle Scholar
  165. Revel A, Elami A, Bor A, Yavin S, Natan Y, Arav A (2001) Intact sheep ovary cryopreservation and transplantation. Fertil Steril 76:S42–S43 (abstract)CrossRefGoogle Scholar
  166. Revel A, Elami A, Bor A, Yavin S, Natan Y, Arav A (2004) Whole sheep ovary cryopreservation and transplantation. Fertil Steril 82:1714–1715.  https://doi.org/10.1016/j.fertnstert.2004.06.046 CrossRefPubMedGoogle Scholar
  167. Ringleb J, Waurich R, Wibbelt G, Streich WJ, Jewgenow K (2011) Prolonged storage of epididymal spermatozoa does not affect their capacity to fertilise in vitro-matured domestic cat (Felis catus) oocytes when using ICSI. Reprod Fertil Dev 23:818–825.  https://doi.org/10.1071/RD10192 CrossRefPubMedGoogle Scholar
  168. Robeck TR, Gearhart SA, Steinman KJ, Katsumata E, Loureiro JD, O'Brien JK (2011) In vitro sperm characterization and development of a sperm cryopreservation method using directional solidification in the killer whale (Orcinus orca). Theriogenology 76:267–279.  https://doi.org/10.1016/j.theriogenology.2011.02.003 CrossRefPubMedGoogle Scholar
  169. Robeck TR, Montano GA, Steinman KJ, Smolensky P, Sweeney J, Osborn S, O'Brien JK (2013) Development and evaluation of deep intra-uterine artificial insemination using cryopreserved sexed spermatozoa in bottlenose dolphins (Tursiops truncatus). Anim Reprod Sci 139:168–181.  https://doi.org/10.1016/j.anireprosci.2013.04.004 CrossRefPubMedGoogle Scholar
  170. Robeck TR, Steinman KJ, Montano GA, Katsumata E, Osborn S, Dalton L, Dunn JL, Schmitt T, Reidarson T, O'Brien JK (2010) Deep intra-uterine artificial inseminations using cryopreserved spermatozoa in beluga (Delphinapterus leucas). Theriogenology 74:989–1001.  https://doi.org/10.1016/j.theriogenology.2010.04.028 CrossRefPubMedGoogle Scholar
  171. Rubei M, Degl'Innocenti S, De Vries PJ, Catone G, and Morini G (2004) Directional freezing (Harmony Cryocare–Multi Thermal Gradient 516): A new tool for equine semen cryopreservation. In: 15th International Congress on Animal Reproduction', 8–12 August, Porto Seguro, Brazil. (Eds. LR França, HP Godinho, M Henry and MIV Melo), p. 503 (abstract)Google Scholar
  172. Rubinsky B (1983) Solidification processes in saline solutions. J Cryst Growth 62:513–522CrossRefGoogle Scholar
  173. Rubinsky B, Arav A, DeVries AL (1991) Cryopreservation of oocytes using directional cooling and antifreeze glycoproteins. Cryo Lett 12:93–106Google Scholar
  174. Rubinsky B, Arav A, Devries AL (1992) The cryoprotective effect of antifreeze glycopeptides from antarctic fishes. Cryobiology 29:69–79.  https://doi.org/10.1016/0011-2240(92)90006-N CrossRefPubMedGoogle Scholar
  175. Rubinsky B, Ikeda M (1985) A cryomicroscope using directional solidification for the controlled freezing of biological material. Cryobiology 22:55–68.  https://doi.org/10.1016/0011-2240(85)90008-2 CrossRefGoogle Scholar
  176. Saacke RG, Almquist JO (1961) Freeze-drying of bovine spermatozoa. Nature 192:995–996.  https://doi.org/10.1038/192995a0 CrossRefPubMedGoogle Scholar
  177. Sakurai M, Furuki T, Akao KI, Tanaka D, Nakahara Y, Kikawada T, Watanabe M, Okuda T (2008) Vitrification is essential for anhydrobiosis in an African chironomid Polypedilum vanderplanki. Proc Nat Acad Sci U.S.A. 105:5093–5098.  https://doi.org/10.1073/pnas.0706197105 CrossRefGoogle Scholar
  178. Sánchez-Partida LG, Simerly CR, Ramalho-Santos J (2008) Freeze-dried primate sperm retains early reproductive potential after intracytoplasmic sperm injection. Fertil Steril 89:742–745.  https://doi.org/10.1016/j.fertnstert.2007.02.066 CrossRefPubMedGoogle Scholar
  179. Saragusty J (2015) Directional freezing for large volume cryopreservation. In: Wolkers WF, Oldenhof H (eds) Methods in cryopreservation and freeze-drying. Springer Verlarg, New York, pp 381–397Google Scholar
  180. Saragusty J, Arav A (2011) Current progress in oocyte and embryo cryopreservation by slow freezing and vitrification. Reproduction 141:1–19.  https://doi.org/10.1530/rep-10-0236 CrossRefPubMedGoogle Scholar
  181. Saragusty J, Gacitua H, King R, Arav A (2006) Post-mortem semen cryopreservation and characterization in two different endangered gazelle species (Gazella gazella and Gazella dorcas) and one subspecies (Gazella gazelle acaiae). Theriogenology 66:775–784.  https://doi.org/10.1016/j.theriogenology.2006.01.055 CrossRefPubMedGoogle Scholar
  182. Saragusty J, Gacitua H, Pettit MT, Arav A (2007) Directional freezing of equine semen in large volumes. Reprod Domest Anim 42:610–615.  https://doi.org/10.1111/j.1439-0531.2006.00831.x CrossRefPubMedGoogle Scholar
  183. Saragusty J, Gacitua H, Rozenboim I, Arav A (2009c) Do physical forces contribute to cryodamage? Biotechnol Bioeng 104:719–728.  https://doi.org/10.1002/bit.22435 CrossRefPubMedGoogle Scholar
  184. Saragusty J, Gacitua H, Rozenboim I, Arav A (2009d) Protective effects of iodixanol during bovine sperm cryopreservation. Theriogenology 71:1425–1432.  https://doi.org/10.1016/j.theriogenology.2009.01.019 CrossRefPubMedGoogle Scholar
  185. Saragusty J, Gacitua H, Zeron Y, Rozenboim I, Arav A (2009b) Double freezing of bovine semen. Anim Reprod Sci 115:10–17.  https://doi.org/10.1016/j.anireprosci.2008.11.005 CrossRefPubMedGoogle Scholar
  186. Saragusty J, Hildebrandt TB, Behr B, Knieriem A, Kruse J, Hermes R (2009a) Successful cryopreservation of Asian elephant (Elephas maximus) spermatozoa. Anim Reprod Sci 115:255–266.  https://doi.org/10.1016/j.anireprosci.2008.11.010 CrossRefPubMedGoogle Scholar
  187. Saragusty J, Lemma A, Hildebrandt TB, Göritz F (2017) Follicular size predicts success in artificial insemination with frozen-thawed sperm in donkeys. PLoS One 12:e0175637.  https://doi.org/10.1371/journal.pone.0175637 CrossRefPubMedPubMedCentralGoogle Scholar
  188. Saragusty J, Osmers J-H, Hildebrandt TB (2016) Controlled ice nucleation - is it really needed for large-volume sperm cryopreservation? Theriogenology 85:1328–1333.  https://doi.org/10.1016/j.theriogenology.2015.12.019 CrossRefPubMedGoogle Scholar
  189. Saragusty J, Walzer C, Petit T, Stalder G, Horowitz I, Hermes R (2010) Cooling and freezing of epididymal sperm in the common hippopotamus (Hippopotamus amphibius). Theriogenology 74:1256–1263.  https://doi.org/10.1016/j.theriogenology.2010.05.031 CrossRefPubMedGoogle Scholar
  190. Schaffner CS (1942) Longivity of fowl spermatozoa in frozen condition. Science 96:337.  https://doi.org/10.1126/science.96.2493.337 CrossRefGoogle Scholar
  191. Shahba MI, El-Sheshtawy RI, El-Azab A-SI, Abdel-Ghaffar AE, Ziada MS, Zaky AA (2016) The effect of freeze-drying media and storage temperature on ultrastructure and DNA of freeze-dried buffalo bull spermatozoa. Asia Pac J Reprod 5:524–535.  https://doi.org/10.1016/j.apjr.2016.11.002 CrossRefGoogle Scholar
  192. Sherman JK (1954) Freezing and freeze-drying of human spermatozoa. Fertil Steril 5:357–371.  https://doi.org/10.1016/S0015-0282(16)31685-5 CrossRefPubMedGoogle Scholar
  193. Sherman JK (1957) Freezing and freeze-drying of bull spermatozoa. Am J Phys 190:281–286Google Scholar
  194. Sherman JK (1963) Improved methods of preservation of human spermatozoa by freezing and freeze-drying. Fertil Steril 14:49–64.  https://doi.org/10.1016/S0015-0282(16)34746-X CrossRefPubMedGoogle Scholar
  195. Sherman JK, Lin TP (1958) Survival of unfertilized mouse eggs during freezing and thawing. Exp Biol Med 98:902–905.  https://doi.org/10.3181/00379727-98-24224 CrossRefGoogle Scholar
  196. Si W, Hildebrandt TB, Reid C, Krieg R, Ji W, Fassbender M, Hermes R (2006) The successful double cryopreservation of rabbit (Oryctolagus cuniculus) semen in large volume using the directional freezing technique with reduced concentration of cryoprotectant. Theriogenology 65:788–798.  https://doi.org/10.1016/j.theriogenology.2005.06.010 CrossRefPubMedGoogle Scholar
  197. Si W, Lu Y, He X, Ji S, Niu Y, Tan T, Ji W (2010) Directional freezing as an alternative method for cryopreserving rhesus macaque (Macaca mulatta) sperm. Theriogenology 74:1431–1438.  https://doi.org/10.1016/j.theriogenology.2010.06.015 CrossRefPubMedGoogle Scholar
  198. Sieme H, Arav A, Klus N, and Klug E (2001) Cryopreservation of stallion spermatozoa using a directional freezing technique. In: Proceedings of the Second Meeting of the European Equine Gamete Group', 26–29 September, Loosdrecht, The Netherlands. (Eds. TAE Stout and JF Wade) pp. 6–8. (Newmarket, Suffolk, UK)Google Scholar
  199. Sitaula R, Elmoazzen H, Toner M, Bhowmick S (2009) Desiccation tolerance in bovine sperm: a study of the effect of intracellular sugars and the supplemental roles of an antioxidant and a chelator. Cryobiology 58:322–330.  https://doi.org/10.1016/j.cryobiol.2009.03.002 CrossRefPubMedGoogle Scholar
  200. Spallanzani L (1776) Opuscoli di fisica animale e vigitabile. In: Opuscolo II. Observazioni e sperienze intorno ai vermicelli spermaici dell' homo e degli animali. (Presso la Societa Tipografica: Modena, Italy)Google Scholar
  201. Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126:663–676.  https://doi.org/10.1016/j.cell.2006.07.024 CrossRefPubMedPubMedCentralGoogle Scholar
  202. Vajta G, Holm P, Kuwayama M, Booth PJ, Jacobsen H, Greve T, Callesen H (1998) Open pulled straw (OPS) vitrification: a new way to reduce cryoinjuries of bovine ova and embryos. Mol Reprod Dev 51:53–58.  https://doi.org/10.1002/(SICI)1098-2795(199809)51:1<53::AID-MRD6>3.0.CO;2-V CrossRefPubMedGoogle Scholar
  203. Vajta G, Rienzi L, Ubaldi FM (2015) Open versus closed systems for vitrification of human oocytes and embryos. Reprod Biomed Online 30:325–333.  https://doi.org/10.1016/j.rbmo.2014.12.012 CrossRefPubMedGoogle Scholar
  204. van Bilsen DGJL, Hoekstra FA, Crowe LM, Crowe JH (1994) Altered phase behavior in membranes of aging dry pollen may cause imbibitional leakage. Plant Physiol 104:1193–1199.  https://doi.org/10.1104/pp.104.4.1193 CrossRefPubMedPubMedCentralGoogle Scholar
  205. van Leeuwenhoek A (1800) On certain Animalcules found in the sediment in gutters on the roofs of houses. In: The selected works of Antony Van Leeuwenhoek. Vol. 2. pp. 207–214. (G. Sidney: London)Google Scholar
  206. Wakayama S, Kamada Y, Yamanaka K, Kohda T, Suzuki H, Shimazu T, Tada MN, Osada I, Nagamatsu A, Kamimura S, Nagatomo H, Mizutani E, Ishino F, Yano S, Wakayama T (2017) Healthy offspring from freeze-dried mouse spermatozoa held on the international Space Station for 9 months. Proc Nat Acad Sci USA 114:5988–5993.  https://doi.org/10.1073/pnas.1701425114 CrossRefPubMedGoogle Scholar
  207. Wakayama T, Yanagimachi R (1998) Development of normal mice from oocytes injected with freeze-dried spermatozoa. Nat Biotechnol 16:639–641.  https://doi.org/10.1038/nbt0798-639 CrossRefPubMedGoogle Scholar
  208. Ward MA, Kaneko T, Kusakabe H, Biggers JD, Whittingham DG, Yanagimachi R (2003) Long-term preservation of mouse spermatozoa after freeze-drying and freezing without cryoprotection. Biol Reprod 69:2100–2108.  https://doi.org/10.1095/biolreprod.103.020529 CrossRefPubMedGoogle Scholar
  209. Watanabe H, Asano T, Abe Y, Fukui Y, Suzuki H (2009) Pronuclear formation of freeze-dried canine spermatozoa microinjected into mouse oocytes. J Assist Reprod Genet 26:531–536.  https://doi.org/10.1007/s10815-009-9358-y CrossRefPubMedPubMedCentralGoogle Scholar
  210. Whittingham DG (1971) Survival of mouse embryos after freezing and thawing. Nature 233:125–126.  https://doi.org/10.1038/233125a0 CrossRefPubMedGoogle Scholar
  211. Whittingham DG, Leibo SP, Mazur P (1972) Survival of mouse embryos frozen to −196° and −269°C. Science 178:411–414.  https://doi.org/10.1126/science.178.4059.411 CrossRefPubMedGoogle Scholar
  212. Willadsen SM, Polge C, Rowson LEA, Moor RM (1976) Deep freezing of sheep embryos. J Reprod Fertil 46:151–154.  https://doi.org/10.1530/jrf.0.0460151 CrossRefPubMedGoogle Scholar
  213. Wilmut I (1972) The effect of cooling rate, warming rate, cryoprotective agent and stage of development of survival of mouse embryos during freezing and thawing. Life Sci 11:1071–1079.  https://doi.org/10.1016/0024-3205(72)90215-9 CrossRefGoogle Scholar
  214. Wilmut I, Rowson LE (1973) Experiments on the low-temperature preservation of cow embryos. Vet Rec 92:686–690CrossRefPubMedGoogle Scholar
  215. Wilmut I, Schnieke AE, McWhir J, Kind AJ, Campbell KH (1997) Viable offspring derived from fetal and adult mammalian cells. Nature 385:810–813.  https://doi.org/10.1038/385810a0 CrossRefPubMedGoogle Scholar
  216. Yanagida K, Yanagimachi R, Perreault SD, Kleinfeld RG (1991) Thermostability of sperm nuclei assessed by microinjection into hamster oocytes. Biol Reprod 44:440–447.  https://doi.org/10.1095/biolreprod44.3.440 CrossRefPubMedGoogle Scholar
  217. Yushchenko NP (1957) Proof of the possibility of preserving mammalian spermatozoa in a dried state. Proc Lenin Acad Agric Sci 22:37–40Google Scholar
  218. Zhang M, Oldenhof H, Sydykov B, Bigalk J, Sieme H, Wolkers WF (2017) Freeze-drying of mammalian cells using trehalose: preservation of DNA integrity. Sci Rep 7:6198.  https://doi.org/10.1038/s41598-017-06542-z CrossRefPubMedPubMedCentralGoogle Scholar
  219. Zheng H, Li B, Yang S-H, Chen L-L, He B-L, Jiao J-L (2010) Cryopresevation of sperms with directional freezing method in Yunnan Diannan miniature pig. Chin J Comp Med 2010:06 (Abstract)Google Scholar
  220. Zhu WJ, Li J, Xiao LJ (2016) Changes on membrane integrity and ultrastructure of human sperm after freeze-drying. J Reprod Contracept 27:76–81.  https://doi.org/10.7669/j.issn.1001-7844.2016.02.0076 CrossRefGoogle Scholar
  221. Zirkler H, Gerbes K, Klug E, Sieme H (2005) Cryopreservation of stallion semen collected from good and poor freezers using a directional freezing device (harmony CryoCare - multi thermal gradient 516). Anim Reprod Sci 89:291–294 (abstract).  https://doi.org/10.1016/j.anireprosci.2005.07.004 CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.FertileSafe Ltd.Ness ZionaIsrael
  2. 2.Laboratory of Embryology, Faculty of Veterinary MedicineUniversity of TeramoTeramoItaly

Personalised recommendations