Novel Ablative Therapies for Renal Tumors

  • Maria del Pilar Laguna Pes
  • Jean J. M. C. H. de la Rosette


Major guidelines on the treatment of renal tumors now include indications for the use of thermal ablation in select patient populations. Renal tumor ablation is most commonly performed with either cryoablation or radiofrequency ablation. In recent years, a number of novel alternative ablation therapies have been developed including irreversible electroporation, microwave ablation, high-intensity focused ultrasound, stereotactic ablation radiation, and photodynamic therapy. This chapter examines the current status of each of these ablative therapies for the treatment of renal tumors. Technological aspects of each novel ablation therapy are described. When available, results of animal studies and phase I–II or observational human studies are discussed.


Renal tumor Small renal mass Ablation Irreversible electroporation Microwave Photodynamic therapy Stereotactic radiation CyberKnife High-intensity focused ultrasound Animal studies Human studies 


  1. 1.
    Choueri TK, Schutz FA, Hevelone ND, Nguyen PL, Lipsitz SR, Williams SB, Silverman SG, Hu JC. Thermal ablation vs surgery for localized kidney cancer: a Surveillance, Epidemiology, and End Results (SEER) database analysis. Urology. 2011;78:93–8.CrossRefGoogle Scholar
  2. 2.
    Laguna MP, Algaba F, Cadeddu J, Clayman R, Gill I, Gueglio G, Hohenfellner M, Joyce A, Landman J, Lee B, van Poppel H. Current patterns of presentation and treatment of renal masses: a clinical research office of the endourological society prospective study. J Endourol. 2014;28:861–70.PubMedCrossRefGoogle Scholar
  3. 3.
    Finelli A, Ismaila N, Bro B, Durack J, Eggener S, Evans A, Gill I, Graham D, Huang W, Jewett MAS, Latcha S, Lowrance W, Rosner M, Shayegan B, Thompson HR, Uzzo R, Russo P. Management of Small Renal Masses: American Society of Clinical Oncology Clinical Practice Guideline. J Clin Oncol. 2017;35:1–13.CrossRefGoogle Scholar
  4. 4.
    Ljungberg B, Bensalah K, Canfield S, et al. EAU guidelines on renal cell carcinoma: 2014 update. Eur Urol. 2015;67:913–24.CrossRefGoogle Scholar
  5. 5.
    Campbell S, Uzzo RG, Allaf ME, et al. Renal mass and localized renal cancer: AUA guideline. J Urol. 2017;198:520–9.CrossRefGoogle Scholar
  6. 6.
    Laguna MP, Walz J, Atwell T, Autorino R, Cestari A, Gahan J, Klatte T, van Lienden K, Teber D, Wagstaff PGK, Zondervan PJ. Chapter 8: Available ablation energies to treat small renal masses. In: Sanchez-Salas R, Desai M, editors. Image-guided therapies for prostate and kidney cancers. A joint SIU-ICUD International Consultation. Melbourne. 15–18 Oct 2015. p. 521–90. Available at: Accessed 14 July 2017.
  7. 7.
    Trudeau V, Becker A, Roghmann F, et al. Local tumor destruction in renal cell carcinoma – an inpatient population-based study. Urol Oncol. 2014;32:54.e1–7.CrossRefGoogle Scholar
  8. 8.
    Patel HD, Pierorazio PM, Johnson MH, et al. Renal functional outcomes after surgery, ablation and active surveillance of localized renal tumors: a systematic review and meta-analysis. Clin J Am Soc Nephrol. 2017;12:1057–69.PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Lee EW, Wong D, Prikhodko SV, Perez A, Tran C, Loh CT, et al. Electron microscopic demonstration and evaluation of irreversible electroporation-induced nanopores on hepatocyte membranes. J Vasc Interv Radiol. 2012;23(1):107–13.PubMedCrossRefGoogle Scholar
  10. 10.
    Chang DC, Reese TS. Changes in membrane-structure induced by electroporation as revealed by rapid-freezing electron-microscopy. Biophys J. 1990;58(1):1–12.PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Wagstaff PG, de Bruin DM, Zondervan PJ, Savci Heijink CD, Engelbrecht MR, van Delden OM, et al. The efficacy and safety of irreversible electroporation for the ablation of renal masses: a prospective, human, in-vivo study protocol. BMC Cancer. 2015;15:165.PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Al-Sakere B, Andre F, Bernat C, Connault E, Opolon P, Davalos RV, et al. Tumor ablation with irreversible electroporation. PLoS One. 2007;2(11):e1135.PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Olweny EO, Kapur P, Tan YK, Park SK, Adibi M, Cadeddu JA. Irreversible electroporation: evaluation of nonthermal and thermal ablative capabilities in the porcine kidney. Urology. 2013;81(3):679–84.PubMedCrossRefGoogle Scholar
  14. 14.
    Pech M, Janitzky A, Wendler JJ, Strang C, Blaschke S, Dudeck O, et al. Irreversible electroporation of renal cell carcinoma: a first-in-man phase I clinical study. Cardiovasc Intervent Radiol. 2011;34(1):132–8.PubMedCrossRefGoogle Scholar
  15. 15.
    van Gemert MJ, Wagstaff PG, de Bruin DM, van Leeuwen TG, van der Wal AC, Heger M, et al. Irreversible electroporation: just another form of thermal therapy? Prostate. 2015;75:332–5.PubMedCrossRefGoogle Scholar
  16. 16.
    Davalos RV, Bhonsle S, Neal RE. Implications and considerations of thermal effects when applying irreversible electroporation tissue ablation therapy. Prostate. 2015;75(10):1114–8.PubMedCrossRefGoogle Scholar
  17. 17.
    Golberg A, Yarmush ML. Nonthermal irreversible electroporation: fundamentals, applications, and challenges. IEEE Trans Biomed Eng. 2013;60(3):707–14.PubMedCrossRefGoogle Scholar
  18. 18.
    Bertacchini C, Margotti PM, Bergamini E, Lodi A, Ronchetti M, Cadossi R. Design of an irreversible electroporation system for clinical use. Technol Cancer Res Treat. 2007;6(4):313–20.PubMedCrossRefGoogle Scholar
  19. 19.
    Buijs M, van Lienden KP, Wagstaff PGK, Scheltema MJV, de bruin DM, Zondervan PJ, van Delden OM, van leeuwen TG, de la Rosette JJMCH, Laguna MP. Irreversible electroporation for the ablation of renal cell carcinoma: a prospective, human, in vivo study protocol (IDEAL phase 2b). JMIR Res Protoc. 2017;6(2):e21. 1–12PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Nielsen K, Scheffer HJ, Vieveen JM, van Tilborg AA, Meijer S, van KC, et al. Anaesthetic management during open and percutaneous irreversible electroporation. Br J Anaesth. 2014;113(6):985–92.PubMedCrossRefGoogle Scholar
  21. 21.
    Edd JF, Horowitz L, Davalos RV, Mir LM, Rubinsky B. In vivo results of a new focal tissue ablation technique: irreversible electroporation. IEEE Trans Biomed Eng. 2006;53:1409–15.PubMedCrossRefGoogle Scholar
  22. 22.
    Tracy CR, Kabbani W, Cadeddu JA. Irreversible electroporation (IRE): a novel method for renal tissue ablation. BJU Int. 2011;107(12):1982–7.PubMedCrossRefGoogle Scholar
  23. 23.
    Deodhar A, Monette S, Single GW Jr, Hamilton WC Jr, Thornton R, Maybody M, et al. Renal tissue ablation with irreversible electroporation: preliminary results in a porcine model. Urology. 2011;77(3):754–60.PubMedCrossRefGoogle Scholar
  24. 24.
    Wendler JJ, Porsch M, Huhne S, Baumunk D, Buhtz P, Fischbach F, et al. Short- and mid-term effects of irreversible electroporation on normal renal tissue: an animal model. Cardiovasc Intervent Radiol. 2013;36(2):512–20.PubMedCrossRefGoogle Scholar
  25. 25.
    Cornelis FH, Durak JC, Kimm SY, Wimmer T, coleman JA, Solomon SB, Srimathveeravalli G. A comparative study of ablation boundary sharpness after percutaneous radiofrequency, cryo-, microwave and irreversible electroporation ablation in normal swine liver and kidneys. Cardiovasc Intervent Radiol. 2017;40:1600. Scholar
  26. 26.
    Morgan MS, Ozayar A, lucas E, Friedlander JI, Shakir NA, Cadeddu JA. Comparative effects of irreversible electroporation, radiofrequency ablation and partial nephrectomy on renal function preservation in a porcine solitary kidney model. Urology. 2016;94:281–7.PubMedCrossRefGoogle Scholar
  27. 27.
    Sommer CM, Fritz S, Wachter MF, Vollherbst D, Stampfl U, Bellemann N, et al. Irreversible electroporation of the pig kidney with involvement of the renal pelvis: technical aspects, clinical outcome, and three-dimensional CT rendering for assessment of the treatment zone. J Vasc Interv Radiol. 2013;24(12):1888–97.PubMedCrossRefPubMedCentralGoogle Scholar
  28. 28.
    Wagstaff PG, de Bruin DM, van den Bos W, Ingels A, van Gemert MJ, Zondervan PJ, et al. Irreversible electroporation of the porcine kidney: temperature development and distribution. Urol Oncol. 2015;33:168.e1–7.CrossRefGoogle Scholar
  29. 29.
    Thomson KR, Cheung W, Ellis SJ, Federman D, Kavnoudias H, Loader-Oliver D, et al. Investigation of the safety of irreversible electroporation in humans. J Vasc Interv Radiol. 2011;22(5):611–21.PubMedCrossRefPubMedCentralGoogle Scholar
  30. 30.
    Trimmer CK, Khosla A, Morgan M, Stephenson SL, Ozayar A, Cadeddu JA. Minimally invasive percutaneous treatment of small renal tumors with irreversible electroporation: a single-center experience. J Vasc Interv Radiol. 2015;26:1465–71.PubMedCrossRefGoogle Scholar
  31. 31.
    Canvasser NE, Sorokin I, Lay AH, Morgan MSC, Ozayar A, Trimmer C, Cadeddu JA. Irreversible electroporation of small renal masses: suboptimal oncologic efficacy in an early series. World J Urol. 2017;35:1549. Scholar
  32. 32.
    Diehl SJ, Rathmann N, Kostrzewa M, Ritter M, Smakic A, Schoenberg SO, Kriegmair MC. Irreversible electroporation for surgical renal masses in solitary kidneys: short-term interventional and functional outcomes. J Vasc Interv Radiol. 2016;27:1407–13.PubMedCrossRefGoogle Scholar
  33. 33.
    Wendler JJ, Porsch M, Nitschke S, Kollermann J, Siedentopf S, Pech M, et al. A prospective Phase 2a pilot study investigating focal percutaneous irreversible electroporation (IRE) ablation by NanoKnife in patients with localised renal cell carcinoma (RCC) with delayed interval tumour resection (IRENE trial). Contemp Clin Trials. 2015;43:10–9.PubMedCrossRefPubMedCentralGoogle Scholar
  34. 34.
    Wendler JJ, Ricke J, Pech M, Fischbach F, Jurgens J, Siedentopf S, Roessner A, Porsch M, Baukumk D, Schostak m KJ, Liehr UB. First delayed resection findings after Irreversible Electroporation (IRE) of human localised renal cell carcinoma (RCC)in the IRENE pilot phase 2a trial. Cardiovasc Intervent Radiol. 2016;39:239–50.PubMedCrossRefGoogle Scholar
  35. 35.
    Hinshaw JL, Lubner MG, Ziemlewicz TJ, Lee FT, Brace CL. Percutaneous tumor ablation tools: microwave, radiofrequency, or cryoablation- what should you use and why? Radiographics. 2014;34:1344–62.PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Brace CL. Radiofrequency and microwave ablation of the liver, lung, kidney and bone: what are the differences ? Curr Probl Diagn Radiol. 2009;38:135–43.PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Andreano A, Cl B. A comparison of direct heating during radiofrequency and microwave ablation in ex vivo liver. Cardiovasc Interv Radiol. 2013;36:505–11.CrossRefGoogle Scholar
  38. 38.
    Duffey BG, Anderson JK. Current and future technology for minimally invasive ablation of renal cell carcinoma. Indian J Urol. 2010;26:410–7.PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Brace CL. Microwave tissue ablation: biophysics, technology and applications. Crit Rev Biomed Eng. 2010;38:65–78.PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Lubner MG, Brace CL, Hinshaw JL, Lee FT Jr. Microwave tumor ablation: mechanism of action, clinical results and devices. J Vasc Interv Radiol. 2010;21(suppl 8):S192–203.PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Knavel EM, Hinshaw JL, Lubner MG, et al. High-powered gas-cooled microwave ablations; shaft cooling creates an effective stick function without altering the ablation zone. AJR Am J Roentgenol. 2012;198:W260–5.PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Li X, Zhang L, Fan W, et al. Comparison of microwave ablation and multipolar radiofrequency ablation, both using a pair of internally cooled interstitial applicators: results in ex vivo porcine livers. Int J Hyperth. 2011;27:240–8.CrossRefGoogle Scholar
  43. 43.
    Laeseke PF, Lee FT Jr, Sampson LA, Van der Weide DW, Brace CL. Microwave ablation versus radiofrequency ablation in the kidney: high-power triaxial antennas create larger ablation zones than similarly sized internally cooled electrodes. J Vac Interv Radio. 2009;20:1224–9.CrossRefGoogle Scholar
  44. 44.
    Castle SM, Salas N, Leveillee RJ. Initial experience using microwave ablation therapy for renal tumor treatment: 18-months follow-up. Urology. 2011;77:792–7.PubMedCrossRefGoogle Scholar
  45. 45.
    Oshima F, YamakadoK NA, Takaki H, Makita M, Takeda K. Simultaneous microwave ablation using multiple antennas in explanted bovine livers: relationship between ablative zone and antenna. Radiat Med. 2008;26:408–14.PubMedCrossRefPubMedCentralGoogle Scholar
  46. 46.
    Durick NA, Laeseke PF, Broderick LS, et al. Microwave ablation with triaxial antennas tuned for lug: results in an in vivo porcine model. Radiology. 2008;247:80–7.PubMedCrossRefGoogle Scholar
  47. 47.
    Sun Y, Wang Y, Ni X, et al. Comparison of ablation zone between 915- and 2.450-mhz cooled – shaft microwave antenna: results in in vivo porcine livers. AJR Am J Roentgenol. 2009;192:511–4.PubMedCrossRefPubMedCentralGoogle Scholar
  48. 48.
    Stickland AD, Clegg PJ, Cronin NJ, et al. Experimental study of large-volume microwave ablation in the liver. Br J Surg. 2002;89:1003–7.CrossRefGoogle Scholar
  49. 49.
    Bertram JM, Yang D, Converse MC, Webster JG, Mahvi DM. A review of coaxial-based interstitial antennas for hepatic microablation. Crit Rev Biomed Eng. 2006;34:187–213.PubMedCrossRefPubMedCentralGoogle Scholar
  50. 50.
    Moore C, Salas N, Zaias J, Shields J, Bird V, Leveillee R. Effects of microwave ablation of the kidney. J Endourol. 2010;24:439–44.PubMedCrossRefGoogle Scholar
  51. 51.
    Niemeyer DJ, Simo KA, MT MM, et al. Optimal ablation volumes are achieved at submaximal power settings in a 2.45-GHz microwave ablation system. Surg Innov. 2015;22:41–5.PubMedCrossRefGoogle Scholar
  52. 52.
    He X, McGee S, Coad JE. Investigation of the thermal and tissue injury behaviour in microwave thermal therapy using a porcine kidney model. Int J Hyperth. 2004;20:567–93.CrossRefGoogle Scholar
  53. 53.
    Brace CL, Duaz TA, Hinshaw JL, Lee FT Jr. Tissue contraction caused by radiofrequency and microwave ablation: a laboratory study in liver rand lung. J Vasc Interv Radiol. 2010;21:1280–6.PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Sommer CM, Sommer SA, Mokry T, et al. Quantification of tissue shrink and dehydration caused by microwave ablation: experimental study in kidneys for the estimation of effective coagulation volume. J Vasc Interv Radiol. 2013;24:1241–8.PubMedCrossRefPubMedCentralGoogle Scholar
  55. 55.
    Sommer CM, Arnegger F, Koch V, et al. Microwave ablation of porcine kidneys in vivo: effect of two different ablation modes (“temperature control” and “power control”) on procedural outcome. Cardiovasc Intervent Radiol. 2012;35:653–60.PubMedCrossRefPubMedCentralGoogle Scholar
  56. 56.
    Bartoletti R, Cai T, Tosoratti N, et al. In vivo microwave-induced porcine kidney thermoablation: results and perspectives from a pilot study of a new probe. BJU Int. 2010;106:1817–21.PubMedCrossRefPubMedCentralGoogle Scholar
  57. 57.
    Isfort P, Penzkofer T, Tanaka T, et al. Efficacy on antegrade pyeloperfusion to protect renal pelvis in kidney microwave ablation using and in vivo swine model. Investig Radiol. 2013;48:863–8.CrossRefGoogle Scholar
  58. 58.
    Hope WW, Schmelzer TM, Newcomb WL, et al. Guidelines for power and time variables for microwave ablation in an in vivo porcine kidney. J Surg Res. 2009;153:263–7.PubMedCrossRefPubMedCentralGoogle Scholar
  59. 59.
    Clark P, Woodruff R, Zagoria R. Microwave ablation of renal parenchymal tumors before nephrectomy: phase I study. AJR. 2007;188:121–14.CrossRefGoogle Scholar
  60. 60.
    Muto G, Castelli E, Migliari R, et al. Laparoscopic microwave ablation and enucleation of small renal masses: preliminary experience. Eur Urol. 2011;60:173–6.PubMedCrossRefGoogle Scholar
  61. 61.
    Bartoletti R, Meliani E, Simonato A, et al. Microwave induced thermoablation with Amica-probe is a safe and reproducible method to treat solid renal masses: results from a phase I study. Oncol Rep. 2012;28:1243–8.PubMedCrossRefGoogle Scholar
  62. 62.
    Martin J, Athreya S. Meta-analysis of cryoablation versus microwave ablation for small renal masses: is there a difference in outcome? Diagn Interv Radiol. 2013;19:501–7.PubMedGoogle Scholar
  63. 63.
    Yu J, Liang P, Xu XL, et al. US-guided percutaneous microwave ablation of renal cell carcinoma: intermediate-term results. Radiology. 2012;263:900–8.PubMedCrossRefGoogle Scholar
  64. 64.
    Guan W, Vai J, Liu J, et al. Microwave ablation versus partial nephrectomy for small renal tumors: intermediate-term results. J Surg Oncol. 2012;106:316–21.PubMedCrossRefGoogle Scholar
  65. 65.
    Bai J, Hu Z, Guan W, et al. Initial experience with retroperitoneoscopic microwave ablation of clinical T(1a) renal tumors. J Endourol. 2010;24:2017–22.PubMedCrossRefGoogle Scholar
  66. 66.
    Carafiello G, Mangini M, Fontana F, et al. Single-antenna microwave ablation under contrast-enhanced ultrasound guidance for treatment of small renal cell carcinoma: preliminary experience. Cardiovasc Intervent Radiol. 2009;33:367–74.CrossRefGoogle Scholar
  67. 67.
    Moreland AJ, Ziemlewicz TJ, Best SL, et al. High powered microwave ablation of T1a renal cell carcinoma: safety and initial clinical evaluation. J Endourol. 2014;28:1046–52.PubMedCrossRefGoogle Scholar
  68. 68.
    Horn JC, Patel RS, Kim E, Nowakowski FS, Lookstein RA, Fischman AM. Percutaneous microwave ablation of renal tumors using a gas-cooled 2.4-GHz probe: technique and initial results. J Vasc Interv Radiol. 2014;25:448–53.PubMedCrossRefGoogle Scholar
  69. 69.
    Carrafiello G, Dionigi G, Ierardi AM, et al. Efficacy, safety and effectiveness of image-guided percutaneous microwave ablation in cystic renal lesions Bosniak III or IV after 24 months follow up. Int J Surg. 2013;11(S1):S30–5.PubMedCrossRefGoogle Scholar
  70. 70.
    Lin Y, Liang P, Yu XL, et al. Percutaneous microwave ablation of renal cell carcinoma is safe in patients with a solitary kidney. Urology. 2014;83:357–63.PubMedCrossRefGoogle Scholar
  71. 71.
    Gao Y, Liang P, Yu X, Yu J, Cheng Z, Han Z, Duan S, Huang H. Microwave treatment of renal cell carcinoma adjacent to renal sinus. Eur J Radiol. 2016;85:2083–9.PubMedCrossRefGoogle Scholar
  72. 72.
    Klapperich ME, Abel EJ, Ziemlewicz TJ, Best S, Lubner MG, Nakada SY, Hinshaw JL, Brace CL, Lee FT, Wells SA. Effect of tumor complexity and technique on efficacy and complications after percutaneous microwave ablation of stage T1a renal cell carcinoma: a single-center, retrospective study. Radiology. 2017;284:272–80.PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Ierardi AM, Puliti A, Angileri SA, Petrillo M, Duka E, Floridi C, Lecchi M, Carrafiello G. Microwave ablation of malignant renal tumors: intermediate-term results and usefulness of RENAL and mRENAL scores for predicting outcomes and complications. Med Oncol. 2017;34:97.PubMedCrossRefGoogle Scholar
  74. 74.
    Cranston D. A review of high intensity focused ultrasound in relation to the treatment of renal tumors and other malignancies. Ultrason Sonochem. 2015;27:654–8.PubMedCrossRefGoogle Scholar
  75. 75.
    ter Haar GR, Clarke RL, Vaughan MG, Hill CR. Trackless surgery using focused ultrasound: technique and case report. Min Invest Ther. 1991;1:13–5.Google Scholar
  76. 76.
    Cranston Hilll CR, ter haar GR. High-intensity ultrasound potential for cancer treatment. Br J Radiol. 1995;68:1296–303.CrossRefGoogle Scholar
  77. 77.
    Hynynen K. The threshold for thermally significant cavitation in dog's thigh muscle in vivo. Ultrasound Med Biol. 1991;17:157–69.PubMedCrossRefGoogle Scholar
  78. 78.
    Klatte T, Marberger M. High-intensity focused ultrasound for the treatment of renal masses: current status and future potential. Curr Opin Urol. 2009;19:188–91.PubMedCrossRefGoogle Scholar
  79. 79.
    Daum DR, Smith NB, King R, Hynynen K. In vivo demonstration of non-invasive thermal surgery of the liver and kidney using and ultrasonic phased array. Ultrasound Med Biol. 1999;25:1087–98.PubMedCrossRefGoogle Scholar
  80. 80.
    Sea JC, Bahler CD, Ring JD, Amstutz S, Sanghvi NT, Cheng L, Sundaram CP. Calibration of a novel, laparoscopic, 12-mm, ultrasound, image-guided, high-intensity focused ultrasound probe for ablation of renal neoplasms. Urology. 2015;85:953–8.PubMedCrossRefGoogle Scholar
  81. 81.
    van Breugel JMM, de Greef M, Wijlemans JW, Schubert G, van den Bosch MAAJ, Moonen CTW, Ries MG. Thermal ablation of a confluent lesion in the porcine kidney with a clinically available MR-HIFU system. Phys Med Biol. 2017;62:5312–26.PubMedCrossRefGoogle Scholar
  82. 82.
    Illing RO, Kennedy JE, Wu F, et al. The safety and feasibility of extracorporeal high-intensity focused ultrasound (HIFU) for the treatment of liver and kidney tumours in a Western population. Br J Cancer. 2005;93:890–5.PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Ritchie RW, Leslie TA, Phillips R, et al. Extracorporeal high intensity focused ultrasound for renal tumors: a 3-year follow up. BJUI. 2010;106:1004–9.CrossRefGoogle Scholar
  84. 84.
    Ritchie R, Collin R, Coussious JC, Leslie T. Attenuation and de-focusing during high intensity focused ultrasound therapy through perinephric fat. Ultrasound Med Biol. 2013;39:1785–93.PubMedCrossRefGoogle Scholar
  85. 85.
    Häcker A, Michel MS, Marlinghaus E, et al. Extracorporeally induced ablation of renal tissue by high-intensity focused ultrasound. BJU Int. 2006;97:779–85.PubMedCrossRefGoogle Scholar
  86. 86.
    Marberger M, Schatzl G, Cranston D, et al. Extracorporeal ablation of renal tumours with high-intensity focused ultrasound. BJU Int. 2005;95(Suppl 2):52–5.PubMedCrossRefGoogle Scholar
  87. 87.
    Ritchie RW, Leslie T, Phillips R, et al. Extracorporeal high intensity focused ultrasound for renal tumours: a 3-year follow-up. BJU Int. 2010;106:1004–9.PubMedCrossRefGoogle Scholar
  88. 88.
    Klingler HC, Susani M, Seip R, et al. A novel approach to energy ablative therapy of small renal tumours: laparoscopic high-intensity focused ultrasound. Eur Urol. 2008;53:810–8.PubMedCrossRefGoogle Scholar
  89. 89.
    Ritchie RW, Leslie TA, Turner GD, et al. Laparoscopic high-intensity focused ultrasound for renal tumours: a proof of concept study. BJU Int. 2011;107:1290–6.PubMedCrossRefGoogle Scholar
  90. 90.
    De Meerler G, Khoo V, Escudier B, et al. Radiotherapy for renal cell carcinoma. Lancet. 2014;15:e170–7.CrossRefGoogle Scholar
  91. 91.
    Ponsky L, Lo SS, Zhang Y, et al. Phase I dose-escalation study of stereotactic body radiotherapy (SBRT) for poor surgical candidates with localized renal cell carcinoma. Radiother Oncol. 2015;117:183–7.PubMedCrossRefPubMedCentralGoogle Scholar
  92. 92.
    Brown JM, Carlson DJ, Brenner DJ. The tumor radiobiology of SRS and SBRT: are more than the 5 Rs involved? Int J Radiat Oncol Biol Phys. 2014;88:254–62.PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Siva S, Pham D, Gill S, et al. A systematic review of stereotactic radiotherapy ablation for primary renal cell carcinoma. BJU Int. 2012;110:E737–43.PubMedCrossRefGoogle Scholar
  94. 94.
    Ponsky LE, Crownover RL, Rosen MJ, et al. Initial evaluation of Cyberknife technology for extracorporeal renal tissue ablation. Urology. 2003;61:498–501.PubMedCrossRefGoogle Scholar
  95. 95.
    Nair VJ, Szanto J, Vandervoort E, et al. CyberKnife for inoperable renal tumors: Canadian pioneering experience. Can J Urol. 2013;20:6944–9.PubMedGoogle Scholar
  96. 96.
    Lo CH, Huang WY, Chao HL, et al. Novel application of stereotactic ablative radiotherapy using CyberKnife for early-stage renal cell carcinoma in patients with pre-existing chronic kidney disease: initial clinical experiences. Oncol Lett. 2014;8:355–60.PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Staehler M, Bader M, Schlenker B, et al. Single fraction radiosurgery for the treatment of renal tumors. J Urol. 2015;193:771–5.PubMedCrossRefGoogle Scholar
  98. 98.
    Kroeze SG, Grimbergen MC, Rehmann H, et al. Photodynamic therapy as novel nephron sparing treatment option for small renal masses. J Urol. 2012;187:289–95.PubMedCrossRefGoogle Scholar
  99. 99.
    Kimm SY, Tarin TV, Monette S, Srimathveeravalli G, Gerber D, Durack JC, Solomon SB, Scardino PT, Scherz A, Coleman J. Nonthermal ablation by using intravascular oxygen radical generation with WST11: dynamic tissue effects and implications for focal therapy. Radiology. 2016;281:109–18.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  • Maria del Pilar Laguna Pes
    • 1
    • 2
  • Jean J. M. C. H. de la Rosette
    • 1
    • 2
  1. 1.Department of UrologyIstanbul Medipol UniversityIstanbulTurkey
  2. 2.AMC University of AmsterdamAmsterdamThe Netherlands

Personalised recommendations