Advertisement

Mycotoxins and Human Disease

  • Aleksandra Barac
Chapter

Abstract

Mycotoxins are secondary fungal metabolites that can be produced in crops and other food commodities and may cause a mycotoxicosis in humans. The usual route of mycotoxin exposure is ingestion as food or feed contaminants. However, dermal and inhalation also may be important routes of exposure. Direct effects of mycotoxins range from an acute disease where severe conditions of altered health may exist prior to death as a result of exposure to the toxin. These conditions are more likely following exposure to high levels of mycotoxin. Other, more insidious or occult conditions or more chronic disease manifestations may result from prolonged exposure to small quantities of the toxin. The mycotoxins that pose the greatest potential risk to human and animal health are aflatoxins, trichothecenes, fumonisins, zearalenone, ochratoxin A, and ergot alkaloids. Awareness regarding the hazards of mycotoxins as contaminants of food and feed is growing, especially in the last decade.

Abbreviations

AFB1

Aflatoxins B1

IARC

International Agency for Research on Cancer

HBV

Hepatitis B

AFM1

Aflatoxin M1

DON

Deoxynivalenol

OTA

Ochratoxin A

BEN

Balkan endemic nephropathy

GI

Gastrointestinal

WDB

Water-damaged buildings

NAC

N-Acetylcysteine

References

  1. 1.
    Forgacs J, Carll WT (1962) Mycotoxicoses. Adv Vet Sci 7:273–382Google Scholar
  2. 2.
    Council of Agricultural Science & Technology (CAST) (2003) Mycotoxins: risks in plant, animal and human systems. task force report No. 139. Council of Agricultural Science & Technology, Iowa, USAGoogle Scholar
  3. 3.
    Matossian MK (1989) Poisons of the past: molds, epidemics, and history. Yale University Press, New Haven, p 190Google Scholar
  4. 4.
    Van Rensburg SJ, Altenkirk B (1974) Claviceps purpurea: ergotism. In: IFH Purchase (ed) Mycotoxins. Elsevier, New York, pp 69–96Google Scholar
  5. 5.
    Alonso VA, Pereyra CM, Keller LA et al (2013) Fungi and mycotoxins in silage: an overview. J Appl Microbiol 115(3):637–643PubMedCrossRefGoogle Scholar
  6. 6.
    Paterson RR, Lima N (2010) Toxicology of mycotoxins. EXS 100:31–63PubMedGoogle Scholar
  7. 7.
    Wambacq E, Vanhoutte I, Audenaert K, De Gelder L, Haesaert G (2016) Occurrence, prevention and remediation of toxigenic fungi and mycotoxins in silage: a review. J Sci Food Agric 96(7):2284–2302PubMedCrossRefGoogle Scholar
  8. 8.
    Bryden WL (2007) Mycotoxins in the food chain: human health implications. Asia Pac J Clin Nutr 16(1):95–101PubMedGoogle Scholar
  9. 9.
    Marin S, Ramos AJ, Cano-Sancho G, Sanchis V (2013) Mycotoxins: occurrence, toxicology, and exposure assessment. Food Chem Toxicol 60:218–237PubMedCrossRefGoogle Scholar
  10. 10.
    Ahmad M, Ahmad MM, Hamid R, Abdin MZ, Javed S (2013) Use of response surface methodology to study the effect of media composition on aflatoxin production by Aspergillus flavus. Mycotoxin Res 29(1):39–45PubMedCrossRefGoogle Scholar
  11. 11.
    Wu HC, Santella R (2012) The role of aflatoxins in hepatocellular carcinoma. Hepat Mon 12(10):e7238PubMedPubMedCentralGoogle Scholar
  12. 12.
    Leong YH, Latiff AA, Ahmad NI, Rosma A (2012) Exposure measurement of aflatoxins and aflatoxin metabolites in human body fluids. A short review. Mycotoxin Res 28(2):79–87PubMedCrossRefGoogle Scholar
  13. 13.
    Bedard LL, Massey TE (2006) Aflatoxin B1-induced DNA damage and its repair. Cancer Lett 241(2):174–183PubMedCrossRefGoogle Scholar
  14. 14.
    Wild CP, Turner PC (2002) The toxicology of aflatoxins as a basis for public health decisions. Mutagenesis 17(6):471–481PubMedCrossRefGoogle Scholar
  15. 15.
    IARC Working Group on the Evaluation of Carcinogenic Risks to Humans (2002) Some traditional herbal medicines, some mycotoxins, naphthalene and styrene. IARC Monogr Eval Carcinog Risks Hum 82:1–556PubMedCentralGoogle Scholar
  16. 16.
    Nordenstedt H, White DL, El-Serag HB (2010) The changing pattern of epidemiology in hepatocellular carcinoma. Dig Liver Dis 42(3):S206–S214PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Anyanwu EC, Kanu I (2007) Biochemical impedance on intracellular functions of vitamin B12 in chronic toxigenic mold exposures. Sci World J 7:1649–1657CrossRefGoogle Scholar
  18. 18.
    Staneva R, Rukova B, Hadjidekova S et al (2013) Whole genome methylation array analysis reveals new aspects in Balkan endemic nephropathy etiology. BMC Nephrol 14:225PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Voss KA, Gelineau-vanWaes JB, Riley RT (2006) Fumonisins: current research trends in developmental toxicology. Mycotoxin Res 22:61–69PubMedCrossRefGoogle Scholar
  20. 20.
    Yoshizawa T, Yamashita A, Luo Y (1994) Fumonisin occurrence in corn from high- and low-risk areas for human esophageal cancer in China. Appl Environ Microbiol 60(5):1626–1629PubMedPubMedCentralGoogle Scholar
  21. 21.
    Bouhet S, Hourcade E, Loiseau N et al (2004) The mycotoxin fumonisin B1 alters the proliferation and the barrier function of porcine intestinal epithelial cells. Toxicol Sci 77:165–171PubMedCrossRefGoogle Scholar
  22. 22.
    Dersjant-Li Y, Verstegen MWA, Gerrits WJJ (2003) The impact of low concentrations of aflatoxin, deoxynivalenol or fumonisins in diets on growing pigs and poultry. Nutr Res Rev 16:223–239PubMedCrossRefGoogle Scholar
  23. 23.
    Pestka JJ, Zhou RR, Moon Y, Chung YJ (2004) Cellular and molecular mechanisms for immune modulation by deoxynivalenol and other tricothecenes; unraveling a paradox. Toxicol Lett 153:61–73PubMedCrossRefGoogle Scholar
  24. 24.
    Riley RT, Enongene E, Voss KA et al (2001) Sphingolipid perturbations as mechanisms for fumonisin carcinogenesis. Environ Health Perspect 109(2):301–308PubMedPubMedCentralGoogle Scholar
  25. 25.
    Kuhn DM, Ghannoum MA (2003) Indoor mold, toxigenic fungi, and Stachybotrys chartarum: infectious disease perspective. Clin Microbiol Rev 16(1):144–172PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Cullen JM, Newberne PM (1993) Acute hepatotoxicity of aflatoxins. In: Eaton DL, Groopman JD (eds) The toxicology of aflatoxins: human health, veterinary, and agricultural significance. Academic, London, pp 1–26Google Scholar
  27. 27.
    Eaton D, Ramsdell HS, Neal G (1993) Biotransformation of aflatoxins. In: Eaton D, Groopman JD (eds) The toxicology of aflatoxins: human health, veterinary, and agricultural significance. Academic, London, pp 45–72Google Scholar
  28. 28.
    Vargas EA, Preis RA, Castro L, Silva CM (2001) Co-occurrence of aflatoxins B1, B2, G1, G2, zearalenone and fumonisin B1 in Brazilian corn. Food Addit Contam 18:981–986PubMedCrossRefGoogle Scholar
  29. 29.
    Henry SH, Bosch FX, Bowers JC (2002) Aflatoxin, hepatitis and worldwide liver cancer risks. Adv Exp Med Biol 504:229–233PubMedCrossRefGoogle Scholar
  30. 30.
    Gong Y, Cardwell K, Hounsa A et al (2002) Dietary aflatoxin exposure and impaired growth in children from Beninand Togo: Cross sectional study. Br Med J 325:20–21CrossRefGoogle Scholar
  31. 31.
    Elsasser TJ, Klasing KC, Filipov N, Thompson F (2000) The metabolic consequences of stress: targets for stress and priorities of nutrient use. In: Moberg GP, Mench JA (eds) The biology of animal stress. CABI Publishing, New York, pp 77–110Google Scholar
  32. 32.
    Hendrickse RC (1991) Kwashiokor: the hypothesis that incriminates aflatoxin. Paediatrics 88:376–379Google Scholar
  33. 33.
    Oswald IP, Marin DE, Bouhet S, Pinton P, Taranu I, Accensi F (2005) Immunotoxicological risk of mycotoxins for domestic animals. Food Addit Contam 22:354–360PubMedCrossRefGoogle Scholar
  34. 34.
    Bondy G, Pestka JJ (2000) Immunomodulation by fungal toxins. J Toxicol Environ Health 3:109–143CrossRefGoogle Scholar
  35. 35.
    Turner PC, Moore SE, Hall AJ, Prentice AM, Wild CP (2003) Modification of immune function through exposure to dietary aflatoxin in Gambian children. Environ Health Perspect 111:217–220PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Jiang YI, Jolly PE, Ellis WO, Wang JS, Phillips TD, Williams JH (2005) AflatoxinB1 albumin adduct levels and cellular immune status in Ghanaians. Int Immunol 17:807–814PubMedCrossRefGoogle Scholar
  37. 37.
    Chuang SC, La Vecchia C, Boffetta P (2009) Liver cancer: descriptive epidemiology and risk factors other than HBV and HCV infection. Cancer Lett 286:9–14PubMedCrossRefGoogle Scholar
  38. 38.
    Llovet JM, Burroughs A, Bruix J (2003) Hepatocellular carcinoma. Lancet 362:1907–1917PubMedCrossRefGoogle Scholar
  39. 39.
    Gomaa AI, Khan SA, Toledano MB, Waked I, Taylor-Robinson SD (2008) Hepatocellular carcinoma: epidemiology, risk factors and pathogenesis. World J Gastroenterol 14:4300–4308PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Matsuda Y, Ichida T, Fukumoto M (2011) Hepatocellular carcinoma and liver transplantation: clinical perspective on molecular targeted strategies. Med Mol Morphol 44:117–124PubMedCrossRefGoogle Scholar
  41. 41.
    Stiborova M, Arlt VM, Schmeiser HN (2016) Balkan endemic nephropathy: an update on its aetiology. Arch Toxicol 90(11):2595–2615PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Anandagoda N, Lord GM (2015) Preventing aristolochic acid nephropathy. Clin J Am Soc Nephrol 10:167–168PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Schmeiser HH, Kucab JE, Arlt VM et al (2012) Evidence of exposure to aristolochic acid in patients with urothelial cancer from a Balkan endemic nephropathy region of Romania. Environ Mol Mutagen 53:636–641PubMedCrossRefGoogle Scholar
  44. 44.
    Stefanovic V, Toncheva D, Polenakovic M (2015) Balkan nephropathy. Clin Nephrol 83(1):64–69PubMedCrossRefGoogle Scholar
  45. 45.
    Pfohl-Leszkowicz A (2009) Ochratoxin A and aristolochic acid involvement in nephropathies and associated urothelial tract tumours. Arh Hig Rada Toksikol 60:465–483PubMedCrossRefGoogle Scholar
  46. 46.
    Mantle PG, Faucet-Marquis V, Manderville RA, Squillaci B, Pfohl-Leszkowicz A (2010) Structures of covalent adducts between DNA and ochratoxin A: a new factor in debate about genotoxicity and human risk assessment. Chem Res Toxicol 23:89–98PubMedCrossRefGoogle Scholar
  47. 47.
    Pinton P, Braicu C, Nougayrede JP, Laffitte J, Taranu I, Oswald IP (2010) Deoxynivalenol impairs porcine intestinal barrier function and decreases the protein expression of claudin-4 through a mitogen activated protein kinase-dependent mechanism. J Nutr 140:1956–1962PubMedCrossRefGoogle Scholar
  48. 48.
    Grenier B, Applegate TJ (2013) Modulation of intestinal functions following mycotoxin ingestion: meta-analysis of published experiments in animals. Toxins 5:396–430PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Maresca M, Fantini J (2010) Some food associated mycotoxins as potential risk factors in humans predisposed to chronic intestinal inflammatory diseases. Toxicon 56:282–294PubMedCrossRefGoogle Scholar
  50. 50.
    Eduard W (2009) Fungal spores: a critical review of the toxicological and epidemiological evidence as a basis for occupational exposure limit setting. Crit Rev Toxicol 39(10):799–864PubMedCrossRefGoogle Scholar
  51. 51.
    Lichtenstein JH, Molina RM, Donaghey TC et al (2010) Pulmonary responses to Stachybotrys chartarum and its toxins: mouse strain affects clearance and macrophage cytotoxicity. Toxicol Sci 116(1):113–121PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Liu C, Shen H, Yi L et al (2015) Oral administration of aflatoxin G(1) induces chronic alveolar inflammation associated with lung tumorigenesis. Toxicol Lett 232(3):547–556PubMedCrossRefGoogle Scholar
  53. 53.
    Thrasher JD, Gray MR, Kilburn KH, Dennis D, Yu A (2012) A water-damaged home and health of occupants: A case study. J Environ Public Health 2012:312836PubMedCrossRefGoogle Scholar
  54. 54.
    Brasel TL, Campbell AW, Demers RE et al (2004) Detection of trichothecene mycotoxins in sera from individuals exposed to Stachybotrys chartarum in indoor environments. Arch Environ Health 59:317–323PubMedGoogle Scholar
  55. 55.
    Layton RC, Purdy CW, Jumper CA, Straus DC (2009) Detection of macrocyclic trichothecene mycotoxins in a caprine (goat) tracheal instillation model. Toxicol Ind Health 25:693–701PubMedCrossRefGoogle Scholar
  56. 56.
    Enongene EN, Sharma RP, Bhandari N, Voss KA, Riley RT (2000) Disruption of sphingolipid metabolism in small intestines, liver and kidney of mice dosed subcutaneously with fumonisin B (1). Food Chem Toxicol 38(9):793–799PubMedCrossRefGoogle Scholar
  57. 57.
    Samaranayake LP (1986) Nutritional factors and oral candidosis. J Oral Pathol 15(2):61–65PubMedCrossRefGoogle Scholar
  58. 58.
    Hitzig WH (1983) Protean appearances of immunodeficiencies: syndromes and inborn errors involving other systems, which express associated primary immunodeficiency. Birth Defects 19(3):307–312PubMedGoogle Scholar
  59. 59.
    Graeme KA (2014) Mycetism: a review of the recent literature. J Med Toxicol 10:173–189PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Rogan WJ, Yang GC, Kimbrough RD (1985) Aflatoxin and Reye’s syndrome: a study of livers from deceased cases. Arch Environ Health 40(2):91–95PubMedCrossRefGoogle Scholar
  61. 61.
    Kirchmair M, Carrilho P, Pfab R et al (2012) Amanita poisoning resulting in acute, reversible renal failure: new cases, new toxic Amanita mushrooms. Nephrol Dial Transplant 27:1380–1386PubMedCrossRefGoogle Scholar
  62. 62.
    Mendez-Navarro J, Ortiz-Olivera NX, Villegas-Rios M et al (2011) Hepatotoxicity from ingestion of wild mushrooms of the genus Amanita section Phalloideae collected Mexico City: two case reports. Ann Hepatol 10(4):568–574PubMedGoogle Scholar
  63. 63.
    French LK, Hendrickson RG, Horowitz BZ (2011) Amanita phalloides poisoning. Clin Toxicol 49:128–129CrossRefGoogle Scholar
  64. 64.
    Hawksworth DL, Wiltshire PEJ (2011) Forensic mycology: the use of fungi in criminal investigations. Forensic Sci Int 206:1–11CrossRefGoogle Scholar
  65. 65.
    Eren SH, Demirel Y, Ugurlu S, Korkmaz I, Aktas C, Guven FM (2010) Mushroom poisoning: retrospective analysis of 294 cases. Clinics 65(5):491–496PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Lima ADL, Costa Fortes R, Carvalho Garbi Novaes MR, Percario S (2012) Poisonous mushrooms: a review of the most common intoxications. Nutr Hosp 27(2):402–408PubMedGoogle Scholar
  67. 67.
    Lukasik-Glebocka M, Druzdz A, Naskret M (2011) Clinical symptoms and circumstances of acute poisoning with fly agaric (Amanita muscaria) and panther cap (Amanita pantherina). Przegl Lek 68(8):449–452PubMedGoogle Scholar
  68. 68.
    Pauli JL, Foot CL (2005) Fatal muscarinic syndrome after eating wild mushrooms. Med J Aust 182:294–295PubMedGoogle Scholar
  69. 69.
    Karlson-Stiber C, Persson H (2003) Cytotoxic fungi-an overview. Toxicon 2(4):339–349CrossRefGoogle Scholar
  70. 70.
    Michelot D, Toth B (1991) Poisoning by Gyromitra esculenta-a review. J Appl Toxicol 11(4):235–243PubMedCrossRefGoogle Scholar
  71. 71.
    Lheureux P, Penaloza A, Gris M (2005) Pyridoxine in clinical toxicology: a review. Eur J Emerg Med 12:78–85PubMedCrossRefGoogle Scholar
  72. 72.
    Gejyo F, Homma N, Higuchi N et al (2005) A novel type of encephalopathy associated with mushroom Sugihiratake ingestion in patients with chronic kidney diseases. Kidney Int 68(1):188–192PubMedCrossRefGoogle Scholar
  73. 73.
    Kuwabara T, Arai A, Honma N, Nishizawa M (2005) Acute encephalopathy among patients with renal dysfunction after ingestion of “sugihiratake”, angel’s wing mushroom—study on the incipient cases in the northern area of Niigata Prefecture. Rinsho Shinkeigaku 45(3):239–245PubMedGoogle Scholar
  74. 74.
    Saviuc P, Danel V (2006) New syndromes in mushroom poisoning. Toxicol Rev 25(3):199–209PubMedCrossRefGoogle Scholar
  75. 75.
    Satora L, Goszcz H, Ciszowski K (2005) Poisonings resulting from the ingestion of magic mushrooms in Krakow. Przegl Lek 62(6):394–396PubMedGoogle Scholar
  76. 76.
    Kurokawa K, Sato H, Nakajima K, Kawanami T, Kato T (2005) Clinical, neuroimaging and electroencephalographic findings of encephalopathy occurring after the ingestion of “sugihiratake” (Pleurocybella porrigens), an autumn mushroom: a report of two cases. Rinsho Shinkeigaku 45(2):111–116PubMedGoogle Scholar
  77. 77.
    Zhang Y, Li Y, Wu G et al (2012) Evidence against barium in the mushroom Trogia venenata as a cause of sudden unexpected death in Yunnan, China. Appl Environ Microbiol 78(24):8834PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Shi GQ, Huang WL, Zhang J et al (2012) Clusters of sudden unexplained death associated with the mushroom, Trogia venenata, in rural Yunnan. PLoS ONE 7(5):e35894PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Santi L, Maggioli C, Mastroroberto M, Tufoni M, Napoli L, Caraceni P (2012) Acute liver failure caused by Amanita phalloides poisoning. Int J Hepatol 2012:48748CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  • Aleksandra Barac
    • 1
  1. 1.Clinic for Infectious and Tropical Diseases, Clinical Centre of Serbia, Faculty of MedicineUniversity of BelgradeBelgradeSerbia

Personalised recommendations