Advertisement

Redesign of Cartesian Diver for Underwater Expression Combining Dynamic Fabrication with Non-contact Manipulation

  • Amy Koike
  • Kazuki Takazawa
  • Satoshi Hashizume
  • Mose Sakashita
  • Daitetsu Sato
  • Yoichi Ochiai
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 850)

Abstract

In this study, we aim to combine dynamic fabrication with non-contact manipulation system applying the mechanism of Cartesian Diver. To achieve this, we propose the design method for underwater objects and non-contact manipulation technique using water pressure with PID control. We successfully designed and manipulate the object by our method. We discussed the principles and methods to create a digitally designed and fabricated the diver and to stabilize it in the middle of water.

Keywords

Dynamic fabrication PIDcontrol Cartesian Diver Underwater 

References

  1. 1.
    Bächer, M., Whiting, E., Bickel, B., Sorkine-Hornung, O.: Spin-it: optimizing moment of inertia for spinnable objects. ACM Trans. Graph. 33(4), Article no. 96 (2014), 10 p.  https://doi.org/10.1145/2601097.2601157
  2. 2.
    Coros, S., Thomaszewski, B., Noris, G., Sueda, S., Forberg, M., Sumner, R.W., Matusik, W., Bickel, B.: Computational design of mechanical characters. ACM Trans. Graph. 32(4), Article no. 83 (2013), 12 p.  https://doi.org/10.1145/2461912.2461953
  3. 3.
    Follmer, S., Leithinger, D., Olwal, A., Hogge, A., Ishii, H.: inFORM: dynamic physical affordances and constraints through shape and object actuation. In: Proceedings of the 26th Annual ACM Symposium on User Interface Software and Technology (UIST 2013), pp. 417–426. ACM, New York (2013).  https://doi.org/10.1145/2501988.2502032
  4. 4.
    Hiroshi, M., Yoshihiro, Y., Satoshi, I., Motoki, S., Toshiro, N., Yuriko, S., Minoru, K., Masanori, Y.: Contactless active force closure manipulation using multiple air jets. In: 2010 IEEE International Conference on Systems, Man and Cybernetics, pp. 4154–4160 (2010).  https://doi.org/10.1109/ICSMC.2010.5642402
  5. 5.
    Lee, J., Post, R., Ishii, H.: ZeroN: mid-air tangible interaction enabled by computer controlled magnetic levitation. In: Proceedings of the 24th Annual ACM Symposium on User Interface Software and Technology (UIST 2011), pp. 327–336 (2011). ACM, New York.  https://doi.org/10.1145/2047196.2047239
  6. 6.
    Ochiai, Y., Hoshi, T., Rekimoto, J.: Pixie dust: graphics generated by levitated and animated objects in computational acoustic-potential field. ACM Trans. Graph. 33(4), Article no. 85 (2014), 13 p.  https://doi.org/10.1145/2601097.2601118.
  7. 7.
    Prévost, R., Bächer, M., Jarosz, W., Sorkine-Hornung, O.: Balancing 3D models with movable masses. In: Proceedings of the Conference on Vision, Modeling and Visualization (VMV 2016), pp. 9–16 (2016). Eurographics Association, Goslar Germany.  https://doi.org/10.2312/vmv.20161337
  8. 8.
    Prévost, R., Whiting, E., Lefebvre, S., Sorkine-Hornung, O.: Make it stand: balancing shapes for 3D fabrication. ACM Trans. Graph. 32(4), Article no. 81 (2013), 10 p.  https://doi.org/10.1145/2461912.2461957.
  9. 9.
    Sun, T., Zheng, C.: Computational design of twisty joints and puzzles. ACM Trans. Graph. 34(4), Article no. 101 (2015), 11 p.  https://doi.org/10.1145/2766961.
  10. 10.
    Umetani, N., Koyama, Y., Schmidt, R., Igarashi, T.: Pteromys: interactive design and optimization of free-formed free-flight model airplanes. ACM Trans. Graph. 33(4), Article no. 65 (2014), 10 p.  https://doi.org/10.1145/2601097.2601129CrossRefGoogle Scholar
  11. 11.
    Umetani, N., Mitani, J., Igarashi, T.: Designing custom-made metallophone with concurrent eigenanalysis. In: NIME (2010)Google Scholar
  12. 12.
    Umetani, N., Panotopoulou, A., Schmidt, R., Whiting, E.: Printone: interactive resonance simulation for free-form print-wind instrument design. ACM Trans. Graph. 35(6), Article no. 184 (2016), 14 p.  https://doi.org/10.1145/2980179.2980250
  13. 13.
    Wang, L., Whiting, E.: Buoyancy optimization for computational fabrication. Comput. Graph. Forum 35(2), 49–58 (2016).  https://doi.org/10.1111/cgf.12810CrossRefGoogle Scholar
  14. 14.
    Zhang, R., Auzinger, T., Ceylan, D., Li, W., Bickel, B.: Functionality-aware retargeting of mechanisms to 3D shapes. ACM Trans. Graph. 36(4), Article no. 81 (2017), 13 p.  https://doi.org/10.1145/3072959.3073710
  15. 15.
    Zhu, L., Xu, W., Snyder, J., Liu, Y., Wang, G., Guo, B.: Motion-guided mechanical toy modeling. ACM Trans. Graph. 31(6), Article no. 127 (2012), 10 p.  https://doi.org/10.1145/2366145.2366146

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Amy Koike
    • 1
  • Kazuki Takazawa
    • 1
  • Satoshi Hashizume
    • 1
  • Mose Sakashita
    • 1
  • Daitetsu Sato
    • 1
  • Yoichi Ochiai
    • 1
  1. 1.University of TsukubaTsukubaJapan

Personalised recommendations