Advertisement

Overview on Potentials and Limitations of Existing Learning Factory Concept Variations

  • Michael Tisch
  • Eberhard Abele
  • Joachim Metternich
Chapter

Abstract

In practice and in the literature, numerous variations of learning factory concepts can be identified. Here, it becomes unclear which advantages and disadvantages individual variations offer. This chapter provides an overview of the different concept variations of learning factories in the narrow and in the broader sense. For all concept variations, advantages and disadvantages in relation to the learning factory core concept are given. For the different learning factory concept variations, various examples from existing learning factories are given.

References

  1. Abdul-Hadi, G., Abulrub, A. N., Attridge, A., & Williams, M. A. (2011). Virtual reality in engineering education: The future of creative learning. In IEEE Global Engineering Education Conference (EDUCON)—Learning Environments and Ecosystems in Engineering Education, 751–757.Google Scholar
  2. Abele, E., Chryssolouris, G., Sihn, W., Metternich, J., ElMaraghy, H. A., Seliger, G., et al. (2017a). Learning factories for future oriented research and education in manufacturing. CIRP Annals—Manufacturing Technology, 66(2), 803–826.CrossRefGoogle Scholar
  3. Abele, E., Chryssolouris, G., Sihn, W., Metternich, J., ElMaraghy, H. A., Seliger, G., Sivard, G., ElMaraghy, W., Hummel, V., Tisch, M., & Seifermann, S. (2017b). Learning factories for future oriented research and education in manufacturing. Presentation CIRP STC-O keynote-paper, GA 2017. CIRP general assebly 2017, Lugano, Switzerland.CrossRefGoogle Scholar
  4. Abele, E., Metternich, J., Tisch, M., Chryssolouris, G., Sihn, W., ElMaraghy, H. A., Hummel, V., & Ranz, F. (2015). Learning factories for research, education, and training. In 5th CIRP-Sponsored Conference on Learning Factories. Procedia CIRP, 32, 1–6.  https://doi.org/10.1016/j.procir.2015.02.187.CrossRefGoogle Scholar
  5. Azadivar, F., & Kramer, B. (2007). Rewards and challenges of utilizing university research/economic development centers for enhancing engineering education. American Society for Engineering Education, 1212471–12124716.Google Scholar
  6. Brenner, B., & Hummel, V. (2016). A seamless convergence of the digital and physical factory aiming in personalized product emergence process (PPEP) for smart products within ESB logistics learning factory at reutlingen university. Procedia CIRP, 54, 227–232.  https://doi.org/10.1016/j.procir.2016.06.108.CrossRefGoogle Scholar
  7. Cassandras, C., Deng, M., Hu, J.-Q., Panayiotou, C., Vakili, P., & Zhao, C. (2004). Development of a discrete event dynamic systems curriculum using a web-based “Real-Time” simulated factory. In Proceeding of the 2004 American Control Conference, Boston, Massachusetts, June 30–July 2, 2004 (p. 1307).Google Scholar
  8. Celar, S., Turic, M., Dragicevic, S., & Veza, I. (2016). Digital learning factory at FESB—University of split. XXII naučna i biznis konferencija YU INFO, 1–6.Google Scholar
  9. Chi, X., & Spedding, T. A. (2006). A web-based intelligent virtual learning environment for industrial continuous improvement. In IEEE International Conference on Industrial Informatics, August 2006 (pp. 1102–1107). Singapore.Google Scholar
  10. Chryssolouris, G., Mavrikios, D., & Mourtzis, D. (2013). Manufacturing systems—skills and competencies for the future. In 46th CIRP Conference on Manufacturing Systems. Procedia CIRP, 7, 17–24.CrossRefGoogle Scholar
  11. Chryssolouris, G., Mavrikios, D., Papakostas, N., Mourtzis, D., Michalos, M., & Georgoulias, K. (2008). Digital manufacturing: History, perspectives, and outlook. Journal of Engineering Manufacture, 222(5), 451–462.CrossRefGoogle Scholar
  12. Chryssolouris, G., Mavrikios, D., Papakostas, N., & Mourtzis D. (2006). Education in manufacturing technology and science: A view on future challenges & goals. In Proceedings of the International Conference on Manufacturing Science and Technology (ICOMAST 2006) (pp. 1–4). Melaka, Malaysia.Google Scholar
  13. Chryssolouris, G., Mavrikios, D., & Rentzos, L. (2016). The teaching factory: A manufacturing education paradigm. In 49th CIRP Conference on Manufacturing Systems. Procedia CIRP, 57, 44–48.CrossRefGoogle Scholar
  14. Ciros. (2016). Ciros: Virtual engineering, virtual learning, virtual reality, service. Retrieved from http://www.ciros-engineering.com/en/home/.
  15. Dassault Systèms. (2017). 3D experience platform. Retrieved from https://www.3ds.com.
  16. Dessouky, M. M. (1998). A virtual factory teaching system in support of manufacturing education. Journal of Engineering Education, 87(4), 459–467.MathSciNetCrossRefGoogle Scholar
  17. Dessouky, M. M., & Verma, S. (2001). A methodology for developing a web-based factory simulator for manufacturing education. IIE Transactions, 33(3), 167–180.Google Scholar
  18. ElMaraghy, H. A., AlGeddawy, T., Azab, A., & ElMaraghy, W. (2011). Change in manufacturing—Research and industrial challenges. In H. A. ElMaraghy (Ed.), Enabling Manufacturing Competitiveness and Economic Sustainability: Proceedings of the 4th International Conference on Changeable, Agile, Reconfigurable and Virtual production (CARV2011) (pp. 2–9). Berlin, London: Springer.Google Scholar
  19. ElMaraghy, H. A., & ElMaraghy, W. (2014). Learning factories for manufacturing systems. In 4th Conference on Learning Factories, Stockholm, Sweden.Google Scholar
  20. ElMaraghy, H. A., & ElMaraghy, W. (2015). Learning integrated product and manufacturing systems. In 5th CIRP-Sponsored Conference on Learning Factories. Procedia CIRP, 32, 19–24.CrossRefGoogle Scholar
  21. Gadre, A., Cudney, E., & Corns, S. (2011). Model development of a virtual learning environment to enhance lean education. Procedia Computer Science, 6, 100–105.  https://doi.org/10.1016/j.procs.2011.08.020.CrossRefGoogle Scholar
  22. Gausemeier, P., Seidel, J., Riedelsheimer, T., & Seliger, G. (2015). Pathways for sustainable technology development—The case of bicycle mobility in Berlin. In 12th Global Conference on Sustainable Manufacturing. Procedia CIRP, 26, 202–207.  https://doi.org/10.1016/j.procir.2014.07.164.CrossRefGoogle Scholar
  23. Goeser, P. T., Johnson, W. M., Hamza-Lup, F. G., & Schaefer, D. (2011). VIEW-A virtual interactive webbased learning environment for engineering. Advances in Engineering Education, 2(3), 1–24.Google Scholar
  24. Görke, M., Bellmann, V., Busch, J., & Nyhuis, P. (2017). Employee qualification by digital learning games. Procedia Manufacturing, 9, 229–237.  https://doi.org/10.1016/j.promfg.2017.04.040.CrossRefGoogle Scholar
  25. Haghighi, A., Shariatzadeh, N., Sivard, G., Lundholm, T., & Eriksson, Y. (2014). Digital learning factories: Conceptualization, review and discussion. In The 6th Swedish Production Symposium (SPS14). Retrieved from http://conferences.chalmers.se/index.php/SPS/SPS14/paper/viewFile/1729/401.
  26. Hammer, M. (2014, August). Making operational transformations successful with experiential learning. In CIRP Collaborative Working Group—Learning Factories for Future Oriented Research and Education in Manufacturing, CIRP General Assembly, Nantes, France.Google Scholar
  27. Hummel, V., Hyra, K., Ranz, F., & Schuhmacher, J. (2015). Competence development for the holistic design of collaborative work systems in the logistics learning factory. In 5th CIRP-Sponsored Conference on Learning Factories. Procedia CIRP, 32, 76–81.  https://doi.org/10.1016/j.procir.2015.02.111.CrossRefGoogle Scholar
  28. Hummel, V., & Westkämper, E. (2007). Learning factory for advanced industrial engineering—Integrated approach of the digital learning environment and the physical model factory (pp. 215–227). Production Engineering, Oficyna Wydawnicza Politechniki Wroctawskiej (needs translation): Krakow, Poland.Google Scholar
  29. Kaluza, A., Juraschek, M., Neef, B., Pittschellis, R., Posselt, G., Thiede, S., & Herrmann, C. (2015). Designing learning environments for energy efficiency through model scale production processes. In 5th CIRP-Sponsored Conference on Learning Factories. Procedia CIRP, 32, 41–46.  https://doi.org/10.1016/j.procir.2015.02.114.CrossRefGoogle Scholar
  30. Kesavadas, T. (2013). V-learn-fact: A new approach for teaching manufacturing and design to mechanical engineering students. ASME 2013 International Mechanical Engineering Congress and Exposition, 5, 1–6.Google Scholar
  31. Lanza, G., Minges, S., Stoll, J., Moser, E., & Haefner, B. (2016). Integrated and modular didactic and methodological concept for a learning factory. In 6th CIRP-Sponsored Conference on Leanring Factories. Procedia CIRP, 54, 136–140.  https://doi.org/10.1016/j.procir.2016.06.107.CrossRefGoogle Scholar
  32. Lanza, G., Moser, E., Stoll, J., & Haefner, B. (2015). Learning factory on global production. In 5th CIRP-Sponsored Conference on Learning Factories. Procedia CIRP, 32, 120–125.  https://doi.org/10.1016/j.procir.2015.02.081.CrossRefGoogle Scholar
  33. Lu, S. Y., Shpitalni, M., & Gadh, R. (1999). Virtual and augmented reality technologies for product realization. CIRP Annals—Manufacturing Technology, 48(2), 471–495.CrossRefGoogle Scholar
  34. Manesh, H. F., & Schaefer, D. (2010a). Virtual learning environments for manufacturing education and training. Computers in Education Journal, 77–89.Google Scholar
  35. Manesh, H. F., & Schaefer, D. (2010b). A virtual factory approach for design and implementation of agile manufacturing systems. American Society for Engineering Education, 15(111), 1–12.Google Scholar
  36. Mavrikios, D., Papakostas, N., Mourtzis, D., & Chryssolouris, G. (2013). On industrial learning and training for the factories of the future: A conceptual, cognitive and technology framework. Journal of Intelligent Manufacturing, 24(3), 473–485.  https://doi.org/10.1007/s10845-011-0590-9.CrossRefGoogle Scholar
  37. Müller, E., & Horbach, S. (2011). Building blocks in an experimental and digital factory. In H. A. ElMaraghy (Ed.), Enabling Manufacturing Competitiveness and Economic Sustainability: Proceedings of the 4th International Conference on Changeable, Agile, Reconfigurable and Virtual production (CARV2011) (pp. 592–597). Berlin, London: Springer.Google Scholar
  38. Muschard, B., & Seliger, G. (2015). Realization of a learning environment to promote sustainable value creation in areas with insufficient infrastructure. In 5th CIRP-Sponsored Conference on Learning Factories. Procedia CIRP, 32, 70–75.  https://doi.org/10.1016/j.procir.2015.04.095.CrossRefGoogle Scholar
  39. Ong, S. K., & Mannan, M. A. (2004). Virtual reality simulations and animations in a web-based interactive manufacturing engineering module. Computers and Education, 43(4), 361–382.  https://doi.org/10.1016/j.compedu.2003.12.001.CrossRefGoogle Scholar
  40. Pittschellis, R. (2015). Multimedia support for learning factories. In 5th CIRP-Sponsored Conference on Learning Factories. Procedia CIRP, 32, 36–40.  https://doi.org/10.1016/j.procir.2015.06.001.CrossRefGoogle Scholar
  41. Plorin, D., Jentsch, D., Hopf, H., & Müller, E. (2015). Advanced learning factory (aLF)—Method, implementation and evaluation. In 5th CIRP-Sponsored Conference on Learning Factories. Procedia CIRP, 32, 13–18.  https://doi.org/10.1016/j.procir.2015.02.115.CrossRefGoogle Scholar
  42. Plorin, D., & Müller, E. (2014). Developing an ambient assisted living environment applying the advanced learning factory (aLF): A conceptual approach for the practical use in the research project A2LICE. ISAGA, 2013, 69–76.Google Scholar
  43. Rentzos, L., Doukas, M., Mavrikios, D., Mourtzis, D., & Chryssolouris, G. (2014). Integrating manufacturing education with industrial practice using teaching factory paradigm: A construction equipment application. In 47th CIRP Conference on Manufacturing Systems. Procedia CIRP, 17, 189–194.CrossRefGoogle Scholar
  44. Rentzos, L., Mavrikios, D., & Chryssolouris, G. (2015). A two-way knowledge interaction in manufacturing education: The teaching factory. In 5th CIRP-Sponsored Conference on Learning Factories. Procedia CIRP, 32, 31–35.  https://doi.org/10.1016/j.procir.2015.02.082.CrossRefGoogle Scholar
  45. Riffelmacher, P. (2013). Konzeption einer Lernfabrik für die variantenreiche Montage. Dissertation, Stuttgart. Stuttgarter Beiträge zur Produktionsforschung: Vol. 15. Stuttgart: Fraunhofer Verlag.Google Scholar
  46. Riffelmacher, P., Kluge, S., Kreuzhage, R., Hummel, V., & Westkämper, E. (2007). Learning factory for the manufacturing industry: Digital Learning shell and a physical model factory – iTRAME for production engineering and improvement. In A. Silva (Ed.), Proceedings of the 20th International Conference on Computer-Aided Production Engineering CAPE (pp. 120–131).Google Scholar
  47. Schuh, G., Gartzen, T., Rodenhauser, T., & Marks, A. (2015). Promoting work-based learning through Industry 4.0. In 5th CIRP-Sponsored Conference on Learning Factories. Procedia CIRP, 32, 82–87.  https://doi.org/10.1016/j.procir.2015.02.213.CrossRefGoogle Scholar
  48. Sivard, G., & Lundholm, T. (2013). XPRES—A digital learning factory for adaptive and sustainable manufacturing of future products. In G. Reinhart, P. Schnellbach, C. Hilgert, & S. L. Frank (Eds.), 3rd Conference on Learning Factories, Munich, May 7th, 2013 (pp. 132–154). Augsburg.Google Scholar
  49. Steffen, M., May, D., & Deuse, J. (2012). The industrial engineering laboratory: Problem based learning in industrial engineering education at TU Dortmund University. In Global Engineering Education Conference (EDUCON), IEEE, —Collaborative Learning and New Pedagogic Approaches in Engineering Education, Marrakesch, Marokko, April 17–20, 2012 (pp. 1–10).Google Scholar
  50. Stier, K. W. (2003). Teaching lean manufacturing concepts through project-based learning and simulation. Journal of Industrial Technology, 19(4), 1–6.Google Scholar
  51. Tarakos. (2017). Tarakos: Virtual made reality. Retrieved from http://www.tarakos.de/.
  52. Thiede, B., Posselt, G., Kauffeld, S., & Herrmann, C. (2017). Enhancing learning experience in physical action-orientated learning factories using a virtually extended environment and serious gaming approaches. Procedia Manufacturing, 9, 238–244.  https://doi.org/10.1016/j.promfg.2017.04.042.CrossRefGoogle Scholar
  53. Tisch, M. (2018). Modellbasierte Methodik zur kompetenzorientierten Gestaltung von Lernfabriken für die schlanke Produktion. Dissertation, Darmstadt. Aachen: Shaker.Google Scholar
  54. Tisch, M., & Metternich, J. (2017). Potentials and limits of learning factories in research, innovation transfer, education, and training. In 7th CIRP-Sponsored Conference on Learning Factories. Procedia Manufacturing (In Press).Google Scholar
  55. Tittagala, R., Bramhall, M., & Pettigrew, M. (2008). Teaching Engineering in a Simulated Industrial Learning Environment: A Case Study in Manufacturing Engineering. Loughborough, England: Engineering Education.Google Scholar
  56. Tvenge, N., Martinsen, K., & Kolla, S. S. V. K. (2016). Combining learning factories and ICT-based situated learning. In 6th CIRP-Sponsored Conference on Leanring Factories. Procedia CIRP, 54, 101–106.CrossRefGoogle Scholar
  57. VDI. (1993). VDI 2221/Methodik zum Entwickeln und Konstruieren technischer Systeme und Produkte. Beuth: VDI-Richtlinien. Berlin.Google Scholar
  58. Veza, I., Gjeldum, N., & Mladineo, M. (2015). Lean learning factory at FESB—University of Split. In 5th CIRP-Sponsored Conference on Learning Factories. Procedia CIRP, 32, 132–137.  https://doi.org/10.1016/j.procir.2015.02.223.CrossRefGoogle Scholar
  59. VisTABLE. (2017a). visTABLE: innovative Fabrikplanungswerkzeuge. Retrieved from http://www.vistable.de/.
  60. VisTABLE. (2017b). visTABLE® touch Software. Retrieved from http://www.vistable.de/vistabletouch-software.
  61. Watanuki, K., & Kojima, K. (2007). Knowledge acquisition and job training for advanced technical skills using immersive virtual environment. Journal of Advanced Mechanical Design, Systems, and Manufacturing, 1(1), 48–57.  https://doi.org/10.1299/jamdsm.1.48.CrossRefGoogle Scholar
  62. Weidig, C., Menck, N., Winkes, P. A., & Aurich, J. C. (2014). Virtual learning factory on VR-supported factory planning. In Collaborative Systems for Smart Networked Environments. 15th IFIP WG 5.5 Working Conferencen Virtual Enterprises, Amsterdam, Netherlands (pp. 455–462).Google Scholar
  63. Wiendahl, H.-P., ElMaraghy, H. A., Nyhuis, P., Zäh, M. F., Wiendahl, H.-H., Duffie, N., et al. (2007). Changeable manufacturing—Classification, design and operation. CIRP Annals—Manufacturing Technology, 56(2), 783–809.  https://doi.org/10.1016/j.cirp.2007.10.003.CrossRefGoogle Scholar
  64. Wiendahl, H.-P., Harms, T., & Fiebig, C. (2003). Virtual factory design. A new tool for a co-operative planning approach. International Journal of Computer Integrated Manufacturing, 16(7–8), 535–540.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Michael Tisch
    • 3
  • Eberhard Abele
    • 1
  • Joachim Metternich
    • 2
  1. 1.Institute of Production Management, Technology and Machine ToolsTechnical University of DarmstadtDarmstadtGermany
  2. 2.Institute of Production Management, Technology and Machine ToolsTechnical University of DarmstadtDarmstadtGermany
  3. 3.Institute of Production Management, Technology and Machine ToolsTechnical University of DarmstadtDarmstadtGermany

Personalised recommendations