Advertisement

Overview on Existing Learning Factory Application Scenarios

  • Michael Tisch
  • Eberhard Abele
  • Joachim Metternich
Chapter

Abstract

This chapter provides an overview of the ways in which learning factories are used in teaching, training, and research. In this context, the role of the learning factory for the most diverse concepts in the context of the application areas is clarified. For the different application fields and concepts, various examples from existing learning factories are given.

References

  1. Abele, E. (2016). Learning factory. CIRP Encyclopedia of Production Engineering.Google Scholar
  2. Abele, E., Bauerdick, C., Strobel, N., & Panten, N. (2016). ETA learning factory: A holistic concept for teaching energy efficiency in production. In 6th CIRP-Sponsored Conference on Leanring Factories. Procedia CIRP, 54, 83–88.CrossRefGoogle Scholar
  3. Abele, E., Bechtloff, S., & Krause, F. (2011). Flexible Serienfertigung im Kundentakt. Werkstatt Und Betrieb-Munchen, 144(6), 24–27.Google Scholar
  4. Abele, E., Bechtloff, S., & Seifermann, S. (2012). Sequenzfertigung für flexible und schlanke Zerspanung. Productivity Management, 17(1), 45–48.Google Scholar
  5. Abele, E., Chryssolouris, G., Sihn, W., Metternich, J., ElMaraghy, H. A., Seliger, G., et al. (2017). Learning factories for future oriented research and education in manufacturing. CIRP Annals—Manufacturing Technology, 66(2), 803–826.CrossRefGoogle Scholar
  6. Abt, C. C. (1987). Serious games. USA: University Press of America.Google Scholar
  7. Aebli, H. (1994). Denken: das Ordnen des Tuns (2. Aufl). Stuttgart: Klett-Cotta.Google Scholar
  8. Ahmad, R., Masse, C., Jituri, S., Doucette, J., & Mertiny, P. (2018). Alberta Learning factory for training reconfigurable assembly process value stream mapping. Procedia Manufacturing, 23, 237–242.  https://doi.org/10.1016/j.promfg.2018.04.023.CrossRefGoogle Scholar
  9. Argyris, C., & Schön, D. A. (1996). Organizational learning (Reprinted with corr). Organization development series. Reading, Mass: Addison-Wesley Pub. Co.Google Scholar
  10. Asmus, S., Karl, F., Mohnen, A., & Reinhart, G. (2015). The impact of goal-setting on worker performance—empirical evidence from a real-effort production experiment. In 12th Global Conference on Sustainable Manufacturing. Procedia CIRP, 26, 127–132.CrossRefGoogle Scholar
  11. Badurdeen, F., Marksberry, P., Hall, A., & Gregory, B. (2010). Teaching lean manufacturing with simulations and games: A survey and future directions. Simulation & Gaming, 41(4), 465–486.CrossRefGoogle Scholar
  12. Balve, P., & Albert, M. (2015). Project-based learning in production engineering at the Heilbronn learning factory. In 5th CIRP-Sponsored Conference on Learning Factories. Procedia CIRP, 32, 104–108.  https://doi.org/10.1016/j.procir.2015.02.215.CrossRefGoogle Scholar
  13. Barrows, H. S., & Tamblyn, R. M. B. S. N. (1980). Problem-based learning: An approach to medical education. USA: Springer Publishing Company.Google Scholar
  14. Beauvais, W. (2013). Qualification as an effective tool to support the implementation of lean. In G. Reinhart, P. Schnellbach, C. Hilgert, & S. L. Frank (Eds.), 3rd Conference on Learning Factories, Munich, 7th May 2013 (pp. 108–117). Augsburg.Google Scholar
  15. Bechtloff, S. (2014). Identifikation wirtschaftlicher Einsatzgebiete der Sequenzfertigung in der Bohr- und Fräsbearbeitung von Kleinserien. Dissertation, Darmstadt. Schriftenreihe des PTW: “Innovation Fertigungstechnik”. Aachen: Shaker.Google Scholar
  16. Bender, W. N. (2012). Project-based learning: differentiating instruction for the 21st century. USA: Sage Publications.Google Scholar
  17. Blöchl, S. J., & Schneider, M. (2016). Simulation game for intelligent production logistics—The PuLL® learning factory. Procedia CIRP, 54, 130–135.  https://doi.org/10.1016/j.procir.2016.04.100.CrossRefGoogle Scholar
  18. Blöchl, S. J., Michalicki, M., & Schneider, M. (2017). Simulation game for lean leadership—Shopfloor management combined with accounting for lean. Procedia Manufacturing, 9, 97–105.  https://doi.org/10.1016/j.promfg.2017.04.031.CrossRefGoogle Scholar
  19. Blume, S., Madanchi, N., Böhme, S., Posselt, G., Thiede, S., & Herrmann, C. (2015). Die Lernfabrik—Research-based learning for sustainable production engineering. In 5th CIRP-Sponsored Conference on Learning Factories. Procedia CIRP, 32, 126–131.  https://doi.org/10.1016/j.procir.2015.02.113.CrossRefGoogle Scholar
  20. Böhner, J., Weeber, M., Kuebler, F., & Steinhilper, R. (2015). Developing a learning factory to increase resource efficiency in composite manufacturing processes. In 5th CIRP-Sponsored Conference on Learning Factories. Procedia CIRP, 32, 64–69.  https://doi.org/10.1016/j.procir.2015.05.003.CrossRefGoogle Scholar
  21. Böllhoff, J., Metternich, J., Frick, N., & Kruczek, M. (2016). Evaluation of the human error probability in cellular manufacturing. In 5th CIRP Global Web Conference (CIRPe 2016). Procedia CIRP, 55, 218–223.CrossRefGoogle Scholar
  22. Böllhoff, J., Seifermann, S., Metternich, J., & Heß, T. (2015). Qualität in der Sequenzfertigung: Bewertung und Diskussion der Prozessfähigkeit einer schlanken Zerspanungszelle. Werkstattstechnik online: wt, 105(1/2), 78–83.Google Scholar
  23. Bonwell, C. C., & Eison, J. A. (1991). Active learning: Creating excitement in the classroom. ASHE-ERIC higher education report: 1, 1991. Washington, D.C.: School of Education and Human Development, George Washington University.Google Scholar
  24. Boud, D., & Feletti, G. (Eds.). (1999). The challenge of problem-based learning (2nd ed., reprinted.). London: Kogan Page.Google Scholar
  25. Brown, J. S., & Duguid, P. (1991). Organizational learning and communities-of-practice: Toward a unified view of working. Learning and innovation. Organization Science, 2(1), 40–57.CrossRefGoogle Scholar
  26. Cachay, J., & Abele, E. (2012). Developing competencies for continuous improvement processes on the shop floor through learning factories—Conceptual design and empirical validation. In 45th CIRP Conference on Manufacturing Systems. Procedia CIRP, 3(3), 638–643.CrossRefGoogle Scholar
  27. Cachay, J., Wennemer, J., Abele, E., & Tenberg, R. (2012). Study on action-oriented learning with a learning factory approach. Procedia—Social and Behavioral Sciences, 55, 1144–1153.CrossRefGoogle Scholar
  28. Cawley, P. (1989). The introduction of a problem-based option into a conventional engineering degree course. Studies in Higher Education, 14(1), 83–95.  https://doi.org/10.1080/03075078912331377632.CrossRefGoogle Scholar
  29. Coleman, J. S. (1982). Experiential learning and information assimilation: Toward an appropriate mix. In D. Conrad & D. Hedin (Eds.), Child & youth services: Volume 4, numbers 3/4. Youth participation and experimental education (pp. 13–20). New York: The Haworth Press.Google Scholar
  30. Crawley, E., Malmqvist, J., Ostlund, S., & Brodeur, D. (2007). Rethinking engineering education: The CDIO approach (1st ed.). New York: Springer.Google Scholar
  31. Creswell, J. W. (2008). Educational research: Planning, conducting, and evaluating quantitative and qualitative research (3rd ed.). Upper Saddle River, N.J.: Pearson/Merrill Prentice Hall.Google Scholar
  32. Crossan, M. M., Lane, H. W., & White, R. E. (1999). An organizational learning framework: From intuition to institution. The Academy of Management Review, 24(3), 522–537.CrossRefGoogle Scholar
  33. De Freitas, S. (2007). Learning in immersive worlds: A review of game based learning. Prepared for the JISC e-Learning Programme. Retrieved from http://researchrepository.murdoch.edu.au/id/eprint/35774/1/gamingreport_v3.pdf.
  34. Deci, E. L., Vallerand, R. J. M., Pelletier, L. G., & Ryan, R. M. (1991). Motivation and education: The self-determination perspective. Educational Psychologist, 26(3 & 4), 325–346.CrossRefGoogle Scholar
  35. Deterding, S., Dixon, D., Khaled, R., & Nacke, L. (2011). From game design elements to gamefulness: Defining “gamification”. MindTrek’, 11, 9–15, 28–30 September 2011. Tampere, Finland.Google Scholar
  36. Dinkelmann, M. (2016). Methode zur Unterstützung der Mitarbeiterpartizipation im Change Management der variantenreichen Serienproduktion durch Lernfabriken. Dissertation, Stuttgart.Google Scholar
  37. Dinkelmann, M., Siegert, J., & Bauernhansl, T. (2014). Change management through learning factories. In M. F. Zäh (Ed.), Enabling manufacturing competitiveness and economic sustainability (pp. 395–399). Springer.  https://doi.org/10.1007/978-3-319-02054-9_67.CrossRefGoogle Scholar
  38. Djaouti, D., Alvarez, J., Jessel, J. P., & Rampnoux, O. (2011). Origins of serious games. In M. Ma, A. Oikonomou, & L. Jain (Eds.), Serious games and edutainment applications (pp. 25–43). London: Springer.CrossRefGoogle Scholar
  39. Dombrowski, U., Wullbrandt, J., & Reimer, A. (2017). Lean stress sensitization in learning factories. Procedia Manufacturing, 9, 339–346.  https://doi.org/10.1016/j.promfg.2017.04.016.CrossRefGoogle Scholar
  40. Elbestawi, M., Centea, D., Singh, I., & Wanyama, T. (2018). SEPT learning factory for industry 4.0 education and applied research. Procedia Manufacturing, 23, 249–254.  https://doi.org/10.1016/j.promfg.2018.04.025.CrossRefGoogle Scholar
  41. Enke, J., Glass, R., & Metternich, J. (2017). Introducing a maturity model for learning factories. In 7th CIRP-Sponsored Conference on Learning Factories. Procedia Manufacturing, 9, 1–8.CrossRefGoogle Scholar
  42. Enke, J., Tisch, M., & Metternich, J. (2016). Learning factory requirements analysis—Requirements of learning factory stakeholders on learning factories. In 5th CIRP Global Web Conference (CIRPe 2016). Procedia CIRP, 55, 224–229.CrossRefGoogle Scholar
  43. Erol, S., Jäger, A., Hold, P., Ott, K., & Sihn, W. (2016). Tangible industry 4.0: A scenario-based approach to learning for the future of production. In 6th CIRP-Sponsored Conference on Leanring Factories. Procedia CIRP, 54, 13–18.CrossRefGoogle Scholar
  44. Euler, D. (2005). Forschendes Lernen. In S. Spoun & W. Wunderlich (Eds.), Studienziel Persönlichkeit: Beiträge zum Bildungsauftrag der Universität heute (pp. 253–272). Frankfurt, New York: Campus-Verlag.Google Scholar
  45. Evensen, D. H., & Hmelo-Silver, C. E. (2000). Problem-based learning: A research perspective on learning interactions. UK: Taylor & Francis.CrossRefGoogle Scholar
  46. Faller, C., & Feldmüller, D. (2015). Industry 4.0 learning factory for regional SMEs. In 5th CIRP-Sponsored Conference on Learning Factories. Procedia CIRP, 32, 88–91.  https://doi.org/10.1016/j.procir.2015.02.117.CrossRefGoogle Scholar
  47. FAPS. (2018). Green factory bavaria. Retrieved from http://www.greenfactorybavaria.de/.
  48. Felicia, P. (2014). Game-based learning: Challenges and opportunities. UK: Cambridge Scholars Publisher.Google Scholar
  49. Festo Didactic. (2017). Learning factory 4.0, Philipp-Matthäus-Hahn-Schule. Balingen: Reference Project Global Project Solutions.Google Scholar
  50. Forrester, J. W. (1961). Industrial dynamics. Cambridge: MIT Press.Google Scholar
  51. Garrison, D. R. (1997). Self-directed learning: Toward a comprehensive model. Adult Education Quarterly, 48(1), 18–33.  https://doi.org/10.1177/074171369704800103.CrossRefGoogle Scholar
  52. Gräßler, I., Pöhler, A., & Pottebaum, J. (2016). Creation of a learning factory for cyber physical production systems. In 6th CIRP-Sponsored Conference on Leanring Factories. Procedia CIRP, 54, 107–112.  https://doi.org/10.1016/j.procir.2016.05.063.CrossRefGoogle Scholar
  53. Gräßler, I., Taplick, P., & Yang, X. (2016b). Educational learning factory of a holistic product creation process. Procedia CIRP, 54, 141–146.  https://doi.org/10.1016/j.procir.2016.05.103.CrossRefGoogle Scholar
  54. Gredler, M. E. (2004). Games and simulations and their relationships to learning. In D. Jonassen (Ed.), Handbook of research on educational communications and technology (2nd ed., pp. 571–581). Mahwah, New Jersey: Lawrence Erlbaum Associates Publishers.Google Scholar
  55. Greeno, J., Collins, A., & Resnick, L. (1996). Cognition and learning. In D. C. Berliner & R. C. Calfee (Eds.), Handbook of educational psychology (pp. 15–46). New York, London: Macmillan; Prentice Hall.Google Scholar
  56. Hambach, J., Diezemann, C., Tisch, M., & Metternich, J. (2016). Assessment of students’ lean competencies with the help of behavior video analysis—Are good students better problem solvers? In 5th CIRP Global Web Conference (CIRPe 2016). Procedia CIRP, 55, 230–235.CrossRefGoogle Scholar
  57. Hambach, J., Tenberg, R., & Metternich, J. (2015). Guideline-based video analysis of competencies for a target-oriented continuous improvement process. In 5th CIRP-Sponsored Conference on Learning Factories. Procedia CIRP, 32, 25–30.  https://doi.org/10.1016/j.procir.2015.02.212.CrossRefGoogle Scholar
  58. Hammer, M. (2014, August). Making operational transformations successful with experiential learning. In CIRP collaborative working group—Learning factories for future oriented research and education in manufacturing. France: CIRP General Assembly, Nantes.Google Scholar
  59. Healey, M. (2005). Linking research and teaching: Exploring disciplinary spaces and the role of inquiry-based learning. In R. Barnett (Ed.), Reshaping the university: New relationships between research, scholarship and teaching (pp. 67–78). UK: McGraw-Hill/Open University Press.Google Scholar
  60. Helleno, A. L., Simon, A. T., Papa, M. C. O., Ceglio, W. E., Rossa Neto, A. S., & Mourad, R. B. A. (2013). Integration university-industry: Laboratory model for learning lean manufacturing concepts in the academic and industrial environments. International Journal of Engineering Education, 29(6), 1387–1399.Google Scholar
  61. Hernstein/Hernstein International Management Institute. (2003). Management report: Befragung von Führungskräften in Österreich, Schweiz und Deutschland. Wien: Hernstein.Google Scholar
  62. Hung, W., Jonassen, D. H., & Liu, R. (2008). Problem-based learning. In M. Spector, D. Merrill, J. van Merrienböer, & M. Driscoll (Eds.), Handbook of research on educational communications and technology (pp. 485–506). Erlbaum.Google Scholar
  63. Jäger, A., Mayrhofer, W., Kuhlang, P., Matyas, K., & Sihn, W. (2012). The “learning factory”: An immersive learning environment for comprehensive and lasting education in industrial engineering. In 16th World Multi-Conference on Systemics. Cybernetics and Informatics, 16(2), 237–242.Google Scholar
  64. Jäger, A., Mayrhofer, W., Kuhlang, P., Matyas, K., & Sihn, W. (2013). Total immersion: Hands and heads-on training in a learning factory for comprehensive industrial engineering education. International Journal of Engineering Education, 29(1), 23–32.Google Scholar
  65. Jank, W., & Meyer, H. (2002). Didaktische Modelle (5., völlig überarb. Aufl.). Berlin: Cornelsen-Scriptor.Google Scholar
  66. Johnson, D. W., Johnson, R. T., & Smith, K. A. (1991). Active learning: Cooperation in the college classroom. Edina, MN: Interaction Book Co.Google Scholar
  67. Jonassen, D. (1999). Designing constructivist learning environments. In C. M. Reigeluth (Ed.), Instructional theories and models: A new paradigm of instructional theory (pp. 215–239). Mahwah, New Jersey: Lawrence Erlbaum Associates Publishers.Google Scholar
  68. Jonassen, D. H., & Rohrer-Murphy, L. (1999). Activity theory as a framework for designing constructivist learning environments. Educational Technology Research and Development, 47(1), 61–79.  https://doi.org/10.1007/BF02299477.CrossRefGoogle Scholar
  69. Jorgensen, J. E., Lamancusa, J. S., Zayas-Castro, J. L., & Ratner, J. (1995). The learning factory: Curriculum integration of design and manufacturing. In 4th World Conference on Engineering Education (pp. 1–7).Google Scholar
  70. Kaluza, A., Juraschek, M., Neef, B., Pittschellis, R., Posselt, G., Thiede, S., & Herrmann, C. (2015). Designing learning environments for energy efficiency through model scale production processes. In 5th CIRP-Sponsored Conference on Learning Factories. Procedia CIRP, 32, 41–46.  https://doi.org/10.1016/j.procir.2015.02.114.CrossRefGoogle Scholar
  71. Kärcher. (2018). Kärcher lean consulting: Lean erleben und verstehen. Retrieved from https://www.kaercher.com/de/services/professional/service-angebote/kaercher-lean-consulting.html.
  72. Karre, H., Hammer, M., Kleindienst, M., & Ramsauer, C. (2017). Transition towards an industry 4.0 state of the LeanLab at Graz University of Technology. Procedia Manufacturing, 9, 206–213.  https://doi.org/10.1016/j.promfg.2017.04.006.CrossRefGoogle Scholar
  73. Keeton, M. T., Sheckley, B. G., Griggs, J. K., & Council for Adult and Experiential Learning. (2002). Effectiveness and efficiency in higher education for adults: A guide for fostering learning. Dubuque, Iowa: Kendall/Hunt Pub.Google Scholar
  74. Kemény, Z., Nacsa, J., Erdős, G., Glawar, R., Sihn, W., Monostori, L., & Ilie-Zudor, E. (2016). Complementary research and education opportunities—A comparison of learning factory facilities and methodologies at TU Wien and MTA SZTAKI. In 6th CIRP-Sponsored Conference on Leanring Factories. Procedia CIRP, 54, 47–52.  https://doi.org/10.1016/j.procir.2016.05.064.CrossRefGoogle Scholar
  75. Knoll, M. (1997). The project method: Its vocational education origin and international development. Journal of Industrial Teacher Education, 34(3).Google Scholar
  76. Kolb, D. A. (1984). Experiential learning: Experience as the source of learning and development. Englewood Cliffs, N.J.: Prentice Hall.Google Scholar
  77. Küsters, D., Praß, N., & Gloy, Y.-S. (2017). Textile learning factory 4.0—Preparing Germany’s textile industry for the digital future. Procedia Manufacturing, 9, 214–221.  https://doi.org/10.1016/j.promfg.2017.04.035.CrossRefGoogle Scholar
  78. Lamancusa, J. S., & Simpson, T. (2004). The learning factory: 10 years of impact at Penn State. Procedings International Conference on Engineering Education, 1–8.Google Scholar
  79. Lave, J., & Wenger, E. (1991). Situated learning: Legitimate peripheral participation. Learning in doing. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  80. Lindemann, H.-J. (2002). The principle of action-oriented learning. Retrieved from http://www.halinco.de/html/docde/HOL-prinzip02002.pdf.
  81. Madsen, O., & Møller, C. (2017). The AAU smart production laboratory for teaching and research in emerging digital manufacturing technologies. Procedia Manufacturing, 9, 106–112.  https://doi.org/10.1016/j.promfg.2017.04.036.CrossRefGoogle Scholar
  82. Makumbe, S., Hattingh, T., Plint, N., & Esterhuizen, D. (2018). Effectiveness of using learning factories to impart lean principles in mining employees. Procedia Manufacturing, 23, 69–74.  https://doi.org/10.1016/j.promfg.2018.03.163.CrossRefGoogle Scholar
  83. McKinsey & Company. (2017). Model factories and offices: Building operations excellence. Retrieved from https://capability-center.mckinsey.com/files/mccn/2017-03/emea_model_factories_brochure_1.pdf.
  84. Metternich, J., Abele, E., Bechtloff, S., & Seifermann, S. (2015). Static total cost comparison model to identify economic fields of application of cellular manufacturing for milling and drilling processes versus done-in-one-concepts. CIRP Annals—Manufacturing Technology, 64(1), 471–474.CrossRefGoogle Scholar
  85. Metternich, J., Bechtloff, S., & Seifermann, S. (2013). Efficiency and economic evaluation of cellular manufacturing to enable lean machining. In 46th CIRP Conference on Manufacturing Systems. Procedia CIRP, 7, 592–597.CrossRefGoogle Scholar
  86. Metternich, J., Böllhoff, J., Seifermann, S., & Beck, S. (2013b). Volume and mix flexibility evaluation of lean production systems. In 2nd CIRP Global Web Conference (CIRPe 2013). Procedia CIRP, 9, 79–84.CrossRefGoogle Scholar
  87. Meudt, T., Metternich, J., & Abele, E. (2017). Value stream mapping 4.0: Holistic examination of value stream and information logistics in production. CIRP Annals—Manufacturing Technology, 66(1), 413–416.  https://doi.org/10.1016/j.cirp.2017.04.005.CrossRefGoogle Scholar
  88. Ministerium für Wirtschaft, Arbeit und Wohnungsbau Baden-Württemberg. (2017). Lernfabriken 4.0 in Baden-Württemberg: Digitalisierung BW. Retrieved from https://wm.baden-wuerttemberg.de/de/innovation/schluesseltechnologien/industrie-40/lernfabrik-40/.
  89. Müller, B. C., Menn, J. P., & Seliger, G. (2017). Procedure for experiential learning to conduct material flow simulation projects, enabled by learning factories. Procedia Manufacturing, 9, 283–290.  https://doi.org/10.1016/j.promfg.2017.04.047.CrossRefGoogle Scholar
  90. Muschard, B., & Seliger, G. (2015). Realization of a learning environment to promote sustainable value creation in areas with insufficient infrastructure. In 5th CIRP-Sponsored Conference on Learning Factories. Procedia CIRP, 32, 70–75.  https://doi.org/10.1016/j.procir.2015.04.095.CrossRefGoogle Scholar
  91. Neisser, U. (1976). Cognition and reality: Principles and implications of cognitive psychology. San Francisco: W.H. Freeman.Google Scholar
  92. Oberhausen, C., & Plapper, P. (2015). Value stream management in the “lean manufacturing laboratory”. In 5th CIRP-sponsored Conference on Learning Factories. Procedia CIRP, 32, 144–149.  https://doi.org/10.1016/j.procir.2015.02.087.CrossRefGoogle Scholar
  93. Reichert, Markus. (2011). Qualification of employees in the development department with SEW live training center. In E. Abele, J. Cachay, A. Heb, & S. Scheibner (Eds.), 1st Conference on learning factories, Darmstadt (pp. 100–117). Darmstadt: Institute of Production Management, Technology and Machine Tools (PTW).Google Scholar
  94. Penn State University. (2017). Bernard M. Gordon learning factory: We bring the real world into the classroom. Retrieved from http://www.lf.psu.edu/.
  95. Pittschellis, R. (2015). Multimedia support for learning factories. In 5th CIRP-Sponsored Conference on Learning Factories. Procedia CIRP, 32, 36–40.  https://doi.org/10.1016/j.procir.2015.06.001.CrossRefGoogle Scholar
  96. Putz, M. (2013). The concept of the new research factory at Fraunhofer IWU—To objectify energy and resource efficiency R&D in the E3-factory. In G. Reinhart, P. Schnellbach, C. Hilgert, & S. L. Frank (Eds.), 3rd Conference on Learning Factories, Munich, 7th May 2013 (pp. 62–77). Augsburg.Google Scholar
  97. Reiner, D. (2009). Methode der kompetenzorientierten Transformation zum nachhaltig schlanken Produktionssystem. Dissertation, Darmstadt. Schriftenreihe des PTW: “Innovation Fertigungstechnik”. Aachen: Shaker.Google Scholar
  98. Reiß, M. (2012). Change management: A balanced and blended approach. Norderstedt: Books on Demand.Google Scholar
  99. RoboCup. (2016). RoboCup logistics league 2016 final—Carologistics vs. solidus. Retrieved from https://www.youtube.com/watch?time_continue=300&v=od1oEeHl8k8.
  100. Schreiber, S., Funke, L., & Tracht, K. (2016). BERTHA—A flexible learning factory for manual assembly. Procedia CIRP, 54, 119–123.  https://doi.org/10.1016/j.procir.2016.03.163.CrossRefGoogle Scholar
  101. Schuh, G., Gartzen, T., Rodenhauser, T., & Marks, A. (2015, July). Promoting work-based learning through industry 4.0. RU Bochum. In 5th Conference on Learning Factories, Bochum, Germany.Google Scholar
  102. Schuh, G., & Warschat, J. (2013). Potenziale einer Forschungsdisziplin Wirtschaftsingenieurwesen. acatech DISKUSSION. Munich: Herbert Utz Verlag.Google Scholar
  103. Schunk, D. H. (1990). Goal setting and self-efficacy during self-regulated learning. Educational Psychologist, 25, 71–86.CrossRefGoogle Scholar
  104. Schützer, K., Rodrigues, L. F., Bertazzi, J. A., Durão, L. F. C. S., & Zancul, E. (2017). Learning environment to support the product development process. Procedia Manufacturing, 9, 347–353.  https://doi.org/10.1016/j.promfg.2017.04.018.CrossRefGoogle Scholar
  105. Seifermann, S. (2018). Methode zur angepassten Erhöhung des Automatisierungsgrades hybrider, schlanker Fertigungszellen. Dissertation. Schriftenreihe des PTW: “Innovation Fertigungstechnik”. Aachen: Shaker.Google Scholar
  106. Seifermann, S., Böllhoff, J., Adolph, S., Abele, E., & Metternich, J. (2017). Flexible design of lean production systems in response to fluctuations due to logistics and traffic. In E. Abele, M. Boltze, & H.-C. Pfohl (Eds.), Dynamic and seamless integration of production, logistics and traffic: Fundamentals of interdisciplinary decision support (pp. 51–82). Cham, S.L.: Springer International Publishing.  https://doi.org/10.1007/978-3-319-41097-5_4.Google Scholar
  107. Seifermann, S., Böllhoff, J., Metternich, J., & Bellaghnach, A. (2014). Evaluation of work measurement concepts for a cellular manufacturing reference line to enable low cost automation for lean machining. In 47th CIRP Conference on Manufacturing Systems. Procedia CIRP, 17, 588–593.CrossRefGoogle Scholar
  108. Seifermann, S., Metternich, J., & Abele, E. (2014, January). Learning factories—Benefits for research and exemplary results. CIRP, CIRP January Meeting, STC-O Technical Presentation, Paris, France.Google Scholar
  109. Shingo, S. (1989). A study of the Toyota production system from an industrial engineering viewprint (Rev. ed.). Cambridge (Mas) [etc]: Productivity.Google Scholar
  110. Sivard, G., & Lundholm, T. (2013). XPRES—A digital learning factory for adaptive and sustainable manufacturing of future products. In G. Reinhart, P. Schnellbach, C. Hilgert, & S. L. Frank (Eds.), 3rd Conference on Learning Factories, Munich, 7th May, 2013 (pp. 132–154). Augsburg.Google Scholar
  111. Steffen, M., Frye, S., & Deuse, J. (2013). The only source of knowledge is experience: Didaktische Konzeption und methodische Gestaltung von Lehr-Lern-Prozessen in Lernfabriken zur Aus- und Weiterbildung im Industrial Engineering. TeachING LearnING.EU. Innovationen für die Zukunft der Lehre in den Ingenieurwissenschaften, pp. 117–129.Google Scholar
  112. Steffen, M., May, D., & Deuse, J. (2012). The industrial engineering laboratory: Problem based learning in industrial engineering education at TU Dortmund University. In Global Engineering Education Conference (EDUCON), IEEE,—Collaborative Learning & New Pedagogic Approaches in Engineering Education, Marrakesch, Marokko, 17–20 April 2012, pp. 1–10.Google Scholar
  113. Sterman, J. D. (1994). Learning in and about complex systems. Working paper/Alfred P. Sloan School of Management: WP# 3660-94-MSA. Cambridge: Alfred P. Sloan School of Management, Massachusetts Institute of Technology.Google Scholar
  114. Stier, K. W. (2003). Teaching lean manufacturing concepts through project-based learning and simulation. Journal of Industrial Technology, 19(4), 1–6.Google Scholar
  115. Streitzig, C., & Oetting, A. (2016). Railway operation research centre—A learning factory for the railway sector. Procedia CIRP, 54, 25–30.  https://doi.org/10.1016/j.procir.2016.05.071.CrossRefGoogle Scholar
  116. Thomar, W. (2015, July 8). Kaerchers global lean academy approach: Incentive talk (industry). In 5th Conference on Learning Factories, Bochum, Germany.Google Scholar
  117. Tietze, F., Czumanski, T., Braasch, M., & Lödding, H. (2013). Problembasiertes Lernen in Lernfabriken. Werkstattstechnik online: wt, 103(3), 246–251.Google Scholar
  118. Tisch, M. (2018). Modellbasierte Methodik zur kompetenzorientierten Gestaltung von Lernfabriken für die schlanke Produktion. Dissertation, Darmstadt. Aachen: Shaker.Google Scholar
  119. Tisch, M., Hertle, C., Abele, E., Metternich, J., & Tenberg, R. (2015a). Learning factory design: A competency-oriented approach integrating three design levels. International Journal of Computer Integrated Manufacturing, 29(12), 1355–1375.  https://doi.org/10.1080/0951192X.2015.1033017.CrossRefGoogle Scholar
  120. Tisch, M., Hertle, C., Cachay, J., Abele, E., Metternich, J., & Tenberg, R. (2013). A systematic approach on developing action-oriented, competency-based learning factories. In 46th CIRP Conference on Manufacturing Systems. Procedia CIRP, 7, 580–585.CrossRefGoogle Scholar
  121. Tisch, M., Hertle, C., Metternich, J., & Abele, E. (2014). Lernerfolgsmessung in Lernfabriken: Kompetenzorientierte Weiterentwicklung praxisnaher Schulungen. Industrie Management, 30(3), 39–42.Google Scholar
  122. Tisch, M., Hertle, C., Metternich, J., & Abele, E. (2015a). Goal-oriented improvement of learning factory trainings. The Learning Factory, An Annual Edition From the Network of Innovative Learning Factories, 1(1), 7–12.Google Scholar
  123. Tisch, M., & Metternich, J. (2017). Potentials and limits of learning factories in research, innovation transfer, education, and training. In 7th CIRP-Sponsored Conference on Learning Factories. Procedia Manufacturing. (In Press).Google Scholar
  124. Tisch, M., Ranz, F., Abele, E., Metternich, J., & Hummel, V. (2015c). Learning factory morphology: Study on form and structure of an innovative learning approach in the manufacturing domain. In TOJET, July 2015 (Special Issue 2 for International Conference on New Horizons in Education 2015), pp. 356–363.Google Scholar
  125. Toivonen, V., Lanz, M., Nylund, H., & Nieminen, H. (2018). The FMS training center—A versatile learning environment for engineering education. Procedia Manufacturing, 23, 135–140.  https://doi.org/10.1016/j.promfg.2018.04.006.CrossRefGoogle Scholar
  126. Tracht, K., Funke, L., & Schottmayer, M. (2015). Online-control of assembly processes in paced production lines. CIRP Annals—Manufacturing Technology., 64, 395–398.CrossRefGoogle Scholar
  127. Tvenge, N., Martinsen, K., & Kolla, S. S. V. K. (2016). Combining learning factories and ICT-based situated learning. In 6th CIRP-Sponsored Conference on Leanring Factories. Procedia CIRP, 54, 101–106.CrossRefGoogle Scholar
  128. UAW-Chrysler National Training Center. (2016). World class manufacturing academy. Retrieved from http://www.uaw-chrysler.com/world-class-mfg-academy/.
  129. Ulrich, H., Dyllick, T., & Probst, G. (1984). Management. Schriftenreihe Unternehmung und Unternehmungsführung: Bd. 13. Bern: P. Haupt.Google Scholar
  130. University of Washington. (2018). Integrated learning factory. Retrieved from https://www.washington.edu/change/proposals/factory.html.
  131. UPRM. (2018). Model factory. Retrieved from http://uprm.edu/p/model_factory/about.
  132. U-Quadrat. (2018). Knorr-Bremse und U2 sind partner. Retrieved from http://www.u-quadrat.de/knorr-bremse-und-u%C2%B2-sind-partner/.
  133. Veza, I., Gjeldum, N., & Mladineo, M. (2015). Lean learning factory at FESB—University of Split. In 5th CIRP-Sponsored Conference on Learning Factories. Procedia CIRP, 32, 132–137.  https://doi.org/10.1016/j.procir.2015.02.223.CrossRefGoogle Scholar
  134. Veza, I., Gjeldum, N., Mladineo, M., Celar, S., Peko, I., Cotic, M., et al. (2017). Development of assembly systems in lean learning factory at the University of Split. Procedia Manufacturing, 9, 49–56.  https://doi.org/10.1016/j.promfg.2017.04.038.CrossRefGoogle Scholar
  135. Wagner, U., AlGeddawy, T., ElMaraghy, H. A., & Müller, E. (2012). The state-of-the-art and prospects of learning factories. In 45th CIRP Conference on Manufacturing Systems. Procedia CIRP, 3, 109–114.CrossRefGoogle Scholar
  136. Wagner, U., AlGeddawy, T., ElMaraghy, H. A., & Müller, E. (2015). Developing products for changeable learning factories. CIRP Journal of Manufacturing Science and Technology, 9, 146–158.CrossRefGoogle Scholar
  137. Wagner, C., Heinen, T., Regber, H., & Nyhuis, P. (2010). Fit for change—Der Mensch als Wandlungsbefähiger. Zeitschrift für wirtschaftlichen Fabrikbetrieb (ZWF), 100(9), 722–727.Google Scholar
  138. Wank, A., Adolph, S., Anokhin, O., Arndt, A., Anderl, R., & Metternich, J. (2016). Using a learning factory approach to transfer industrie 4.0 approaches to small- and medium-sized enterprises. In 6th CIRP-Sponsored Conference on Leanring Factories. Procedia CIRP, 54, 89–94.  https://doi.org/10.1016/j.procir.2016.05.068.CrossRefGoogle Scholar
  139. Weick, K. E. (1979). The social psychology of organizing. In Topics in social psychology (2nd ed.). New York: McGraw-Hill.Google Scholar
  140. Werbach, K., & Hunter, D. (2012). For the win: How game thinking can revolutionize your business. Philadelphia, PA: Wharton Digital Press.Google Scholar
  141. Wiech, M., Böllhoff, J., & Metternich, J. (2017). Development of an optical object detection solution for defect prevention in a learning factory. Procedia Manufacturing, 9, 190–197.  https://doi.org/10.1016/j.promfg.2017.04.037.CrossRefGoogle Scholar
  142. Wood, D. F. (2003). Problem based learning. BMJ: British Medical Journal, 326(7384), 328–330.CrossRefGoogle Scholar
  143. Wurdinger, S. D. (2005). Using experiential learning in the classroom: Practical ideas for all educators. Lanham, Md: Scarecrow Education.Google Scholar
  144. Wurdinger, S. D. (2016). The power of project-based learning: Helping students develop important life skills. USA: Rowman & Littlefield Publishers.Google Scholar
  145. von Humboldt, W. (1957). Über die innere und äußere Organisation der höheren wissenschaftlichen Anstalten in Berlin. In H. Weinstock (Ed.) (pp. 229–241). Frankfurt: Fischer Bücherei.Google Scholar
  146. Yoo, I. S., Braun, T., Kaestle, C., Spahr, M., Franke, J., Kestel, P., et al. (2016). Model factory for additive manufacturing of mechatronic products: Interconnecting world-class technology partnerships with leading AM players. Procedia CIRP, 54, 210–214.  https://doi.org/10.1016/j.procir.2016.03.113.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Michael Tisch
    • 3
  • Eberhard Abele
    • 1
  • Joachim Metternich
    • 2
  1. 1.Institute of Production Management, Technology and Machine ToolsTechnical University of DarmstadtDarmstadtGermany
  2. 2.Institute of Production Management, Technology and Machine ToolsTechnical University of DarmstadtDarmstadtGermany
  3. 3.Institute of Production Management, Technology and Machine ToolsTechnical University of DarmstadtDarmstadtGermany

Personalised recommendations