Modelling Quantile Premium for Dependent LOBs in Property/Casualty Insurance

  • Alicja Wolny-DominiakEmail author
  • Stanisław Wanat
  • Daniel Sobiecki
Conference paper
Part of the Springer Proceedings in Business and Economics book series (SPBE)


An essential element of an insurance company activity is the calculation of what is referred to as the pure premium for a single risk, defined as the mean of total claim amount. The additional information is to look for the VaR risk measure or quantile premium. It is an easy task in case of only one line of business (LOB) covered by the premium. Nowadays the typical situation is to cover several LOBs in one risk, as e.g. automobile risk can be split into TPL (third part liability), MOD (motor own damage), fire, theft and so on. In this case, quantile premium, which captures the dependency among LOBs, can improve in practice the determination of risk-based capital requirements for P&C insurers, setting overall risk target by senior management, pricing of excess-of-loss reinsurance treaties or designing scenario analyses, to name a couple of applications. The goal of this paper is to put forward copula-based regression model dedicated to estimate the quantile premium for single risk in insurance covering dependent LOBs. To obtain the premium, first the dependency between LOBs is captured by the copula and second the Monte Carlo simulation is performed. Finally, some properties of quantile premium are analyzed. All computations are carried out with R program and the R code is available to download (see


  1. Antonio K, Valdez EA (2012) Statistical concepts of a priori and a posteriori risk classification in insurance. AStA Adv Stat Anal 96:187–224CrossRefGoogle Scholar
  2. Bühlmann H, Gisler A (2005) A course in credibility theory and its applications. Springer, BerlinGoogle Scholar
  3. Denuit M, Dhaene J, Goovaerts M, Kaas R (2006) Actuarial theory for dependent risks: measures, orders and models. Wiley, HobokenGoogle Scholar
  4. Dhaene J, Denuit M, Goovaerts MJ, Kaas R, Vyncke D (2002a) The concept of comonotonicity in actuarial science and finance: theory. Insur Math Econ 31(1):3–33CrossRefGoogle Scholar
  5. Dhaene J, Denuit M, Goovaerts MJ, Kaas R, Vyncke D (2002b) The concept of comonotonicity in actuarial science and finance: theory. Insur Math Econ 31(2):133–161CrossRefGoogle Scholar
  6. Dimakos XK, Di Rattalma AF (2002) Bayesian premium rating with latent structure. Scand Actuar J 2002(1):162–184CrossRefGoogle Scholar
  7. Joe H, Xu JJ (1996) The estimation method of inference functions for margins for multivariate models, vol. 166. Technical reportGoogle Scholar
  8. Jørgensen B, Paes De Souza MC (1994) Fitting Tweedie’s compound poisson model to insurance claims data. Scand Actuar J 1994(1):69–93CrossRefGoogle Scholar
  9. Nelsen RB (1999) An introduction to copulas. Springer Science & Business Media, New YorkCrossRefGoogle Scholar
  10. Pérignon C, Smith DR (2010) Diversification and value-at-risk. J Bank Financ 34:55–66CrossRefGoogle Scholar
  11. Shi P, Feng X, Ivantsova A (2015) Dependent frequency–severity modeling of insurance claims. Insur Math Econ 64:417–428CrossRefGoogle Scholar
  12. Sklar M (1959) Fonctions de répartition à n dimensions et leurs marges. Université Paris 8Google Scholar
  13. Wanat S (2012) Modele zależności w agregacji ryzyka ubezpieczyciela. Zeszyty Naukowe/Uniwersytet Ekonomiczny w Krakowie. Seria Specjalna, MonografieGoogle Scholar
  14. Wolny-Dominiak A (2014) Taryfikacja w ubezpieczeniach majątkowych z wykorzystaniem modeli mieszanych. Wydawnictwo Uniwersytetu Ekonomicznego w KatowicachGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Alicja Wolny-Dominiak
    • 1
    Email author
  • Stanisław Wanat
    • 2
  • Daniel Sobiecki
    • 3
  1. 1.University of Economics in KatowiceKatowicePoland
  2. 2.Cracow University of EconomicsKrakówPoland
  3. 3.SGH Warsaw School of EconomicsWarszawaPoland

Personalised recommendations