• Nilanjan Dey
  • Amira S. Ashour
  • Waleed S. Mohamed
  • Nhu Gia Nguyen
Part of the SpringerBriefs in Speech Technology book series (BRIEFSSPEECHTECH)


This book introduces the basic definitions of the sensors, the biosensors and their features, and the equivalent components, amplifiers, filters, and bio-measurement systems for further circuit design. It describes and categorizes the mainstream acoustic wave biosensors, including the utilization of the bulk acoustic waves and analysis devices, which imply surface acoustic waves. In addition, the use of the piezoelectric substrates of the acoustic sensors design is included. The different types of the biosensors are presented. Several applications of the acoustic biosensors are introduced.


Amplifiers Filters Bio-measurement systems Remote monitoring Hearing aid applications 


  1. 1.
    Gopalsamy, C., Park, S., Rajamanickam, R., & Jayaraman, S. (1999). The Wearable Motherboard™: The first generation of adaptive and responsive textile structures (ARTS) for medical applications. Virtual Reality, 4(3), 152–168.CrossRefGoogle Scholar
  2. 2.
    Penner, A., Doron, E., & Porat, Y. (2001). U.S. Patent No. 6,198,965. Washington, DC: U.S. Patent and Trademark Office.Google Scholar
  3. 3.
    Mba, D., & Rao, R. B. (2006). Development of acoustic emission technology for condition monitoring and diagnosis of rotating machines; bearings, pumps, gearboxes, engines and rotating structures. The Shock and Vibration Digest, 38(1), 3–16.CrossRefGoogle Scholar
  4. 4.
    Chourasia, V. S., & Tiwari, A. K. (2012). Wireless data acquisition system for fetal phonocardiographic signals using BluetoothTM. International Journal of Computers in Healthcare, 1(3), 240–253.CrossRefGoogle Scholar
  5. 5.
    Sa-Ngasoongsong, A., Kunthong, J., Sarangan, V., Cai, X., & Bukkapatnam, S. T. (2012). A low-cost, portable, high-throughput wireless sensor system for phonocardiography applications. Sensors, 12(8), 10851–10870.CrossRefGoogle Scholar
  6. 6.
    Zhang, Y., Fogoros, R., Haro, C., Dalal, Y., Brockway, M., & Siejko, K. Z. (2011). U.S. Patent No. 7,922,669. Washington, DC: U.S. Patent and Trademark Office.Google Scholar
  7. 7.
    Semmlow, J., & Rahalkar, K. (2007). Acoustic detection of coronary artery disease. Annual Review of Biomedical Engineering, 9, 449–469.CrossRefGoogle Scholar
  8. 8.
    Miles, R. N., & Hoy, R. R. (2006). The development of a biologically-inspired directional microphone for hearing aids. Audiology and Neurotology, 11(2), 86–94.CrossRefGoogle Scholar
  9. 9.
    Bertrand, A., & Moonen, M. Robust distributed noise reduction in hearing aids with external acoustic sensor nodes. EURASIP Journal on Advances in Signal Processing, 2009, 2009, 12.Google Scholar
  10. 10.
    Ko, W. H., Zhang, R., Huang, P., Guo, J., Ye, X., Young, D. J., & Megerian, C. A. (2009). Studies of MEMS acoustic sensors as implantable microphones for totally implantable hearing-aid systems. IEEE Transactions on Biomedical Circuits and Systems, 3(5), 277–285.CrossRefGoogle Scholar
  11. 11.
    Doclo, S., Gannot, S., Moonen, M., & Spriet, A. (2010). Acoustic beamforming for hearing aid applications. In Handbook on array processing and sensor networks (pp. 269–302). Hoboken: Wiley-IEEE.CrossRefGoogle Scholar
  12. 12.
    Maglogiannis, I., Loukis, E., Zafiropoulos, E., & Stasis, A. (2009). Support vectors machine-based identification of heart valve diseases using heart sounds. Computer Methods and Programs in Biomedicine, 95(1), 47–61.CrossRefGoogle Scholar
  13. 13.
    Hu, T., & Fei, Y. (2010). QELAR: A machine-learning-based adaptive routing protocol for energy-efficient and lifetime-extended underwater sensor networks. IEEE Transactions on Mobile Computing, 9(6), 796–809.CrossRefGoogle Scholar
  14. 14.
    Yatani, K., & Truong, K. N. (2012, September). BodyScope: A wearable acoustic sensor for activity recognition. In Proceedings of the 2012 ACM Conference on Ubiquitous Computing (pp. 341–350). ACM.Google Scholar
  15. 15.
    Palaniappan, R., Sundaraj, K., & Ahamed, N. U. (2013). Machine learning in lung sound analysis: A systematic review. Biocybernetics and Biomedical Engineering, 33(3), 129–135.CrossRefGoogle Scholar
  16. 16.
    Özdemir, A. T., & Barshan, B. (2014). Detecting falls with wearable sensors using machine learning techniques. Sensors, 14(6), 10691–10708.CrossRefGoogle Scholar
  17. 17.
    Lane, N. D., Georgiev, P., & Qendro, L. (2015, September). DeepEar: Robust smartphone audio sensing in unconstrained acoustic environments using deep learning. In Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing (pp. 283–294). ACM.Google Scholar

Copyright information

© The Author(s), under exclusive licence to Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  • Nilanjan Dey
    • 1
  • Amira S. Ashour
    • 2
  • Waleed S. Mohamed
    • 3
  • Nhu Gia Nguyen
    • 4
  1. 1.Department of Information TechnologyTechno India College of TechnologyKolkataIndia
  2. 2.Department of Electronics and Electrical Communications EngineeringFaculty of Engineering, Tanta UniversityTantaEgypt
  3. 3.Department of Internal MedicineFaculty of Medicine, Tanta UniversityTantaEgypt
  4. 4.Graduate SchoolDuy Tan UniversityDa Nang CityVietnam

Personalised recommendations