Advertisement

Biomedical Signals

  • Nilanjan Dey
  • Amira S. Ashour
  • Waleed S. Mohamed
  • Nhu Gia Nguyen
Chapter
Part of the SpringerBriefs in Speech Technology book series (BRIEFSSPEECHTECH)

Abstract

In our daily life, sensors are corporate in several devices and applications for a better life. Such sensors as the tactile sensors are included in the touch screens and the computers’ touch pads. The input of these sensors is from the environment that converted into an electrical signal for further processing in the sensor system. The sensor’s main role is to measure a specific quantity and create a signal for interpretation. The human bodies continuously communicate health information that reflects the status of the body organs and the overall health information. Such information is typically captured by physical devices that measure different types of information, such as measuring the brain activity, blood glucose, blood pressure, heart rate, nerve conduction, and so forth. According to these measurements, physicians decide the diagnosis and treatment decisions. Engineers are realizing new acquiring devices to measure noninvasively the different types of signals for further analysis using mathematical algorithms and formulae. This chapter includes classifications of the biosignals based on several principles. In addition, the different biosensors are highlighted including the role of the biopotential amplifier stage within the sensor system. Finally, the biomedical signal acquisition and processing phases are also included.

Keywords

Carotid pulse signal Electrocardiogram signal Electroencephalogram signal Phonocardiogram signal Chemical biosignal Optical biosignal Magnetic biosignal Electric biosignal Acoustic biosignal Bioimpedance signals Biomedical sensors Biopotential amplifier 

References

  1. 1.
    Marchionini, G. (1997). Information seeking in electronic environments (Vol. 9). New York: Cambridge University Press.Google Scholar
  2. 2.
    Yilmaz, T., Foster, R., & Hao, Y. (2010). Detecting vital signs with wearable wireless sensors. Sensors, 10(12), 10837–10862.CrossRefGoogle Scholar
  3. 3.
    Dey, N., & Ashour, A. S. (2018). Sources localization and DOAE techniques of moving multiple sources. In Direction of arrival estimation and localization of multi-speech sources (pp. 23–34). Cham: Springer.CrossRefGoogle Scholar
  4. 4.
    Dey, N., & Ashour, A. S. (2018). Computing in medical image analysis. In Soft computing based medical image analysis (pp. 3–11).CrossRefGoogle Scholar
  5. 5.
    Elhayatmy, G., Dey, N., & Ashour, A. S. (2018). Internet of things based wireless body area network in healthcare. In Internet of things and big data analytics toward next-generation intelligence (pp. 3–20). Cham: Springer.CrossRefGoogle Scholar
  6. 6.
    Ghaderi, F. (2010). Signal processing techniques for extracting signals with periodic structure: Applications to biomedical signals. Cardiff University.Google Scholar
  7. 7.
    Odinaka, I. C. (2014). Identifying humans by the shape of their heartbeats and materials by their X-ray scattering profiles. Washington University in St. Louis.Google Scholar
  8. 8.
    Haraldsson, H., Edenbrandt, L., & Ohlsson, M. (2004). Detecting acute myocardial infarction in the 12-lead ECG using Hermite expansions and neural networks. Artificial Intelligence in Medicine, 32(2), 127–136.Google Scholar
  9. 9.
    Dey, N., & Ashour, A. S. (2018). Applied examples and applications of localization and tracking problem of multiple speech sources. In Direction of arrival estimation and localization of multi-speech sources (pp. 35–48). Cham: Springer.CrossRefGoogle Scholar
  10. 10.
    Jiminez Gonzalez, A. (2010). Antenatal foetal monitoring through abdominal phonogram recordings: A single-channel independent component approach (Doctoral dissertation, University of Southampton).Google Scholar
  11. 11.
    Dickhaus, H., & Heinrich, H. (1996). Classifying biosignals with wavelet networks [a method for noninvasive diagnosis]. IEEE Engineering in Medicine and Biology Magazine, 15(5), 103–111.CrossRefGoogle Scholar
  12. 12.
    Mar, T., Zaunseder, S., Martínez, J. P., Llamedo, M., & Poll, R. (2011). Optimization of ECG classification by means of feature selection. IEEE Transactions on Biomedical Engineering, 58(8), 2168–2177.CrossRefGoogle Scholar
  13. 13.
    Tavakolian, K., Nasrabadi, A. M., & Rezaei, S. (2004, May). Selecting better EEG channels for classification of mental tasks. In Circuits and Systems, 2004. ISCAS'04. Proceedings of the 2004 International Symposium on (Vol. 3, pp. III–537). IEEE.Google Scholar
  14. 14.
    Arvaneh, M., Guan, C., Ang, K. K., & Quek, C. (2011). Optimizing the channel selection and classification accuracy in EEG-based BCI. IEEE Transactions on Biomedical Engineering, 58(6), 1865–1873.CrossRefGoogle Scholar
  15. 15.
    Martínez-Vargas, J. D., Godino-Llorente, J. I., & Castellanos-Dominguez, G. (2012). Time–frequency based feature selection for discrimination of non-stationary biosignals. EURASIP Journal on Advances in Signal Processing, 2012(1), 219.CrossRefGoogle Scholar
  16. 16.
    Vidaurre, C., Sander, T. H., & Schlögl, A. (2011). BioSig: The free and open source software library for biomedical signal processing. Computational Intelligence and Neuroscience, 2011.Google Scholar
  17. 17.
    Zhang, Z., Song, Y., Cui, H., Wu, J., Schwartz, F., & Qi, H. (2017). Topological analysis and Gaussian decision tree: Effective representation and classification of biosignals of small sample size. IEEE Transactions on Biomedical Engineering, 64(9), 2288–2299.CrossRefGoogle Scholar
  18. 18.
    Georgieva, O., Milanov, S., & Georgieva, P. (2014). Unsupervised EEG biosignal discrimination. International Journal of Reasoning-based Intelligent Systems, 6(3–4), 118–125.CrossRefGoogle Scholar
  19. 19.
    Cuesta-Frau, D., Pérez-Cortes, J. C., Andreu-García, G., & Novák, D. (2002). Feature extraction methods applied to the clustering of electrocardiographic signals. A comparative study. In Pattern Recognition, 2002. Proceedings. 16th International Conference on (Vol. 3, pp. 961–964). IEEE.Google Scholar
  20. 20.
    Kim, J., Mastnik, S., & André, E. (2008, January). EMG-based hand gesture recognition for realtime biosignal interfacing. In Proceedings of the 13th international conference on Intelligent user interfaces (pp. 30–39). ACM.Google Scholar
  21. 21.
    Prutchi, D., & Norris, M. (2005). Design and development of medical electronic instrumentation: A practical perspective of the design, construction, and test of medical devices. Hoboken: Wiley.Google Scholar
  22. 22.
    Kramme, R., Hoffmann, K. P., & Pozos, R. S. (Eds.). (2011). Springer handbook of medical technology. New York: Springer Science & Business Media.Google Scholar
  23. 23.
    Bronzino, J. D. (2006). Biomedical signals: Origin and dynamic characteristics; frequency-domain analysis. In Medical devices and systems (pp. 27–48). CRC Press.Google Scholar
  24. 24.
    Bronzino, J. D. (Ed.). (2006). Medical devices and systems. Boca Raton: CRC Press.Google Scholar
  25. 25.
    Berntson, G. G., Quigley, K. S., & Lozano, D. (2007). Cardiovascular psychophysiology. In J. T. Cacioppo, L. G. Tassinary, & G. G. Berntson (Eds.), Handbook of psychophysiology (Vol. 3, pp. 182–210). Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  26. 26.
    Casaccia, S., Sirevaag, E. J., Richter, E., O'Sullivan, J. A., Scalise, L., & Rohrbaugh, J. W. (2014, May). Decoding carotid pressure waveforms recorded by laser Doppler vibrometry: Effects of rebreathing. In AIP Conference Proceedings (Vol. 1600, No. 1, pp. 298–312). AIP.Google Scholar
  27. 27.
    Soleymani, S., Borzage, M., Noori, S., & Seri, I. (2012). Neonatal hemodynamics: Monitoring, data acquisition and analysis. Expert Review of Medical Devices, 9(5), 501–511.CrossRefGoogle Scholar
  28. 28.
    Kaniusas, E. (2015). Biomedical signals and sensors II. Berlin\Heidelberg: Springer.CrossRefGoogle Scholar
  29. 29.
    Liu, Y., Norton, J. J., Qazi, R., Zou, Z., Ammann, K. R., Liu, H., Yan, L., Tran, P. L., Jang, K., Lee, J. W., Zhang, D., Kilian, K. A., Jung, S. H., Bretl, T., Xiao, J., Slepian, M. J., Huang, Y., Jeong, J., & Rogers, J. A. (2016). Epidermal mechano-acoustic sensing electronics for cardiovascular diagnostics and human-machine interfaces. Science Advances, 2(11), e1601185.CrossRefGoogle Scholar
  30. 30.
    Alamdari, N. T. (2016). A morphological approach to identify respiratory phases of seismocardiogram. The University of North Dakota.Google Scholar
  31. 31.
    Fay, C. (2013). Investigation into strategies for harvesting chemical based information using digital imaging and infra-red sensors for environmental and health applications (Doctoral dissertation, Dublin City University).Google Scholar
  32. 32.
    Kaniusas, E. (2012). Fundamentals of biosignals. In Biomedical signals and sensors I (pp. 1–26). Berlin\Heidelberg: Springer.CrossRefGoogle Scholar
  33. 33.
    Safieddine, D., Kachenoura, A., Albera, L., Birot, G., Karfoul, A., Pasnicu, A., Biraben, A., Wendling, F., Senhadji, L., & Merlet, I. (2012). Removal of muscle artifact from EEG data: Comparison between stochastic (ICA and CCA) and deterministic (EMD and wavelet-based) approaches. EURASIP Journal on Advances in Signal Processing, 2012(1), 127.Google Scholar
  34. 34.
    Sontakay, R. (2018). Real-time signal analysis of the ECG signal for generating an artificial pulse for continuous flow blood pumps using virtual instrumentation (Doctoral dissertation, California State University, Northridge).Google Scholar
  35. 35.
    Dey, N., & Ashour, A. S. (2017). Direction of arrival estimation and localization of multi-speech sources. Springer Science and Business Media.Google Scholar
  36. 36.
    Ashour, A. S., Dey, N., & Mohamed, W. S. (2016). Abdominal imaging in clinical applications: Computer aided diagnosis approaches. In Medical imaging in clinical applications (pp. 3–17). Cham: Springer.CrossRefGoogle Scholar
  37. 37.
    Dey, N., Hassanien, A. E., Bhatt, C., Ashour, A., & Satapathy, S. C. (Eds.). (2018). Internet of things and big data analytics toward next-generation intelligence. Cham: Springer.Google Scholar
  38. 38.
    Gospodinova, E., Gospodinov, M., Dey, N., Domuschiev, I., Ashour, A. S., Balas, S. V., & Olariu, T. (2016, August). Specialized software system for heart rate variability analysis: An implementation of nonlinear graphical methods. In International workshop soft computing applications (pp. 367–374). Cham: Springer.Google Scholar
  39. 39.
    Acharya, U. R., Joseph, K. P., Kannathal, N., Lim, C. M., & Suri, J. S. (2006). Heart rate variability: a review. Medical and biological engineering and computing, 44(12), 1031–1051.Google Scholar
  40. 40.
    Soni, Y., Jain, J. K., Meena, R. S., & Maheshwari, R. (2017, May). HRV analysis of young adults in pre-meal and post-meal stage. In Recent Trends in Electronics, Information & Communication Technology (RTEICT), 2017 2nd IEEE International Conference on (pp. 1125–1129). IEEE.Google Scholar
  41. 41.
    Ronkainen, N. J., Halsall, H. B., & Heineman, W. R. (2010). Electrochemical biosensors. Chemical Society Reviews, 39(5), 1747–1763.CrossRefGoogle Scholar
  42. 42.
    Scheller, F., Schubert, F., Pfeiffer, D., Hintsche, R., Dransfeld, I., Renneberg, R., Wollenberger, U., Riedel, K., Pavlova, M., Kuhn, M., Muller, H. G., Tan, P., Hoffmann, W., & Movitz, W. (1989). Research and development of biosensors. A review. Analyst, 114(6), 653–662.CrossRefGoogle Scholar
  43. 43.
    Kriz, D., Ramström, O., & Mosbach, K. (1997). Peer reviewed: Molecular imprinting: New possibilities for sensor technology. Analytical Chemistry, 69(11), 345A–349A.CrossRefGoogle Scholar
  44. 44.
    Deisingh, A. K., & Thompson, M. (2004). Biosensors for the detection of bacteria. Canadian Journal of Microbiology, 50(2), 69–77.CrossRefGoogle Scholar
  45. 45.
    Shah, J., & Wilkins, E. (2003). Electrochemical biosensors for detection of biological warfare agents. Electroanalysis, 15(3), 157–167.CrossRefGoogle Scholar
  46. 46.
    Rodriguez-Mozaz, S., Marco, M. P., de Alda, M. J. L., & Barceló, D. (2004). Biosensors for environmental monitoring of endocrine disruptors: A review article. Analytical and Bioanalytical Chemistry, 378(3), 588–598.CrossRefGoogle Scholar
  47. 47.
    Saha, K., Agasti, S. S., Kim, C., Li, X., & Rotello, V. M. (2012). Gold nanoparticles in chemical and biological sensing. Chemical Reviews, 112(5), 2739–2779.CrossRefGoogle Scholar
  48. 48.
    Herold, M., Scepan, J., & Clarke, K. C. (2002). The use of remote sensing and landscape metrics to describe structures and changes in urban land uses. Environment and Planning A, 34(8), 1443–1458.CrossRefGoogle Scholar
  49. 49.
    Mac Ruairí, R., Keane, M. T., & Coleman, G. (2008, August). A wireless sensor network application requirements taxonomy. In Sensor Technologies and Applications, 2008. SENSORCOMM'08. Second International Conference on (pp. 209–216). IEEE.Google Scholar
  50. 50.
    Gnawali, O., Yarvis, M., Heidemann, J., & Govindan, R. (2004, October). Interaction of retransmission, blacklisting, and routing metrics for reliability in sensor network routing. In Sensor and Ad Hoc Communications and Networks, 2004. IEEE SECON 2004. 2004 First Annual IEEE Communications Society Conference on (pp. 34–43). IEEE.Google Scholar
  51. 51.
    Boccippio, D. J., Koshak, W., Blakeslee, R., Driscoll, K., Mach, D., Buechler, D., Boeck, W., Christian, H. J., & Goodman, S. J. (2000). The Optical Transient Detector (OTD): Instrument characteristics and cross-sensor validation. Journal of Atmospheric and Oceanic Technology, 17(4), 441–458.CrossRefGoogle Scholar
  52. 52.
    Rothrock, R. L., & Drummond, O. E. (2000, July). Performance metrics for multiple-sensor multiple-target tracking. In Signal and Data Processing of Small Targets 2000 (Vol. 4048, pp. 521–532). International Society for Optics and Photonics.Google Scholar
  53. 53.
    Nagel, J. H. (2000). Biopotential amplifiers. In J. D. Bronzino (Ed.), Biomedical engineering hand book (2nd ed., pp. 70–71). New York: Springer-Verlag.Google Scholar
  54. 54.
    Zhou, G., Wang, Y., & Cui, L. (2015). Biomedical sensor, device and measurement systems. In Advances in Bioengineering. InTech.Google Scholar
  55. 55.
    Denison, T. J., Jensen, R. M., & Santa, W. A. (2009). U.S. Patent Application No. 12/237,868.Google Scholar
  56. 56.
    Ljubisavljevic, M., & Popovic, M. B. (1999). Data acquisition, processing and storage. In Modern techniques in neuroscience research (pp. 1277–1311). Berlin, Heidelberg: Springer.CrossRefGoogle Scholar
  57. 57.
    Schreiner, S. (2014). Medical instruments and devices. In Medical devices and human engineering.Google Scholar
  58. 58.
    Zikov, T., Bibian, S., & Modarres, M. (2017). U.S. Patent No. 9,554,721. Washington, DC: U.S. Patent and Trademark Office.Google Scholar
  59. 59.
    Estrada, E. F. (2010). Computer-aided detection of sleep apnea and sleep stage classification using HRV and EEG signals. The University of Texas at El Paso.Google Scholar
  60. 60.
    Cavazzana, L. (2012). Integrating an EMG signal classifier and a hand rehabilitation device: Early signal recognition and real time performances.Google Scholar
  61. 61.
    Rodrigues, F. M. S. (2015). Establishing a framework for the development of multimodal virtual reality interfaces with applicability in education and clinical practice (Doctoral dissertation).Google Scholar
  62. 62.
    Estrada, E. F. (2010). Computer-aided detection of sleep apnea and sleep stage classification using HRV and EEG signals. The University of Texas at El Paso.Google Scholar
  63. 63.
    Kaniusas, E. (2015). Sensing by acoustic biosignals. In Biomedical signals and sensors II (pp. 1–90). Berlin, Heidelberg: Springer.Google Scholar
  64. 64.
    Bridger, K., Cooke, A. V., Kuhn, P. M., Lutian, J. J., Passaro, E. J., Sewell, J. M., Waskey, T. V., & Rubin, G. R. (2002). U.S. Patent No. 6,491,647. Washington, DC: U.S. Patent and Trademark Office.Google Scholar
  65. 65.
    Sörnmo, L., & Laguna, P. (2005). Bioelectrical signal processing in cardiac and neurological applications (Vol. 8). London: Academic Press.Google Scholar
  66. 66.
    Kaniusas, E. (2007). Acoustical signals of biomechanical systems. In C. T. Leondes (Ed.), Biomechanical systems technology: Volume 4: General anatomy (pp. 1–44). Singapore: World Scientific Publishing.Google Scholar
  67. 67.
    Shimizu, K., Kawamura, K., & Yamamoto, K. (2000). Practical considerations for a system to locate moving persons. Biotelemetry, 15, 639–645.Google Scholar

Copyright information

© The Author(s), under exclusive licence to Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  • Nilanjan Dey
    • 1
  • Amira S. Ashour
    • 2
  • Waleed S. Mohamed
    • 3
  • Nhu Gia Nguyen
    • 4
  1. 1.Department of Information TechnologyTechno India College of TechnologyKolkataIndia
  2. 2.Department of Electronics and Electrical Communications EngineeringFaculty of Engineering, Tanta UniversityTantaEgypt
  3. 3.Department of Internal MedicineFaculty of Medicine, Tanta UniversityTantaEgypt
  4. 4.Graduate SchoolDuy Tan UniversityDa Nang CityVietnam

Personalised recommendations