Advertisement

Spread

  • Cang Hui
  • Pietro Landi
  • Henintsoa Onivola Minoarivelo
  • Andriamihaja Ramanantoanina
Chapter
Part of the SpringerBriefs in Ecology book series (BRIEFSECOLOGY)

Abstract

Organisms move or disperse their progenies across space, either via their own motions or by currents and vectors. Spreading models differ on the level of tractability and realism. At the individual level, models of random walks have been developed to capture animal movement in heterogeneous landscapes. At the metapopulation level and regional scale, metapopulation models and demographic models have been developed to explore colonisation dynamics and spatial synchrony. When dispersal kernels are explicit, reaction-diffusion models and integro-difference equations, as well as agent-based models, can be applied for modelling the spread. The development of species distribution models, a set of sophisticated statistical tools, further allows us to trace the potential distribution of species in past and future environmental conditions.

References

  1. Brauer F, Castillo-Chavez C (2012) Mathematical models in population biology and epidemiology. Springer, BerlinCrossRefGoogle Scholar
  2. Cairns B, Pollett PK (2004) Extinction times for a general birth, death and catastrophe process. J App Prob 4:1211–1218CrossRefGoogle Scholar
  3. Chesson P, Donahue MJ, Melbourne BA, Sears ALW (2005) Scale transition theory for understanding mechanisms in metacommunities. In: Holyoak M, Leibold MA, Holt RD (eds) Metacommunities: spatial dynamics and ecological communities. University of Chicago Press, Chicago, IL, pp 279–306Google Scholar
  4. Codling EA, Plank MJ, Benhamou S (2008) Random walk models in biology. J Roy Soc Interface 5:813–834CrossRefGoogle Scholar
  5. Dias PC (1996) Sources and sinks in population biology. Trends Ecol Evol 11:326–330CrossRefPubMedGoogle Scholar
  6. Elaydi S (2005) An introduction to difference equations. Springer, BerlinGoogle Scholar
  7. Elith J, Leathwick JR (2009) Species distribution models: ecological explanation and prediction across space and time. Ann Rev Ecol Evol Sys 40:677–697CrossRefGoogle Scholar
  8. Fox JW, Vasseur DA, Hausch S, Roberts J (2011) Phase locking, the Moran effect and distance decay of synchrony: experimental tests in a model system. Ecol Lett 14:163–168CrossRefPubMedGoogle Scholar
  9. Franklin J (2009) Mapping species distributions: spatial inference and prediction. Cambridge University Press, CambridgeGoogle Scholar
  10. Gonzalez A, Holt RD (2002) The inflationary effects of environmental fluctuations in source-sink systems. Proc Natl Acad Sci U S A 99:14872–14877CrossRefPubMedPubMedCentralGoogle Scholar
  11. Jansen VAA, Yoshimura J (1998) Populations can persist in an environment consisting of sink habitats only. Proc Natl Acad Sci U S A 95:3696–3698CrossRefPubMedPubMedCentralGoogle Scholar
  12. Hanski I (1999) Metapopulation ecology. Oxford University Press, OxfordGoogle Scholar
  13. Hui C (2015) Carrying capacity of the environment. In: Wright JD (ed) International encyclopedia of the social and behavioral sciences, vol 3, 2nd edn. Elsevier, Oxford, pp 155–160CrossRefGoogle Scholar
  14. Hui C, Richardson DM (2017) Invasion dynamics. Oxford University Press, OxfordCrossRefGoogle Scholar
  15. Hui C, Fox GA, Gurevitch J (2017) Scale-dependent portfolio effects explain growth inflation and volatility reduction in landscape demography. Proc Natl Acad Sci U S A 114:12507–12511CrossRefPubMedPubMedCentralGoogle Scholar
  16. Hui C, Roura-Pascual N, Brotons N, Robinson RA, Evans KL (2012) Flexible dispersal strategies in native and non-native ranges: environmental quality and the ‘good-stay, bad-disperse’ rule. Ecography 35:1024–1032CrossRefGoogle Scholar
  17. Kearny M, Porter W (2009) Mechanistic niche modelling: combining physiological and spatial data to predict species’ ranges. Ecol Lett 12:334–350CrossRefGoogle Scholar
  18. Kinezaki N, Kawasaki K, Shigesada N (2006) Spatial dynamics of invasion in sinusoidally varying environments. Popul Ecol 48:263–270CrossRefGoogle Scholar
  19. Kot M (2001) Elements of mathematical ecology. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  20. Kot M, Lewis MA, van den Driessche P (1996) Dispersal data and the spread of invading organisms. Ecology 17:2027–2042CrossRefGoogle Scholar
  21. Kot M, Medlock J, Reluga TC, Walton DB (2004) Stochasticity, invasions and branching random walks. Theor Popul Biol 66:175–184CrossRefPubMedGoogle Scholar
  22. Levins R (1969) Some demographic and genetic consequences of environmental heterogeneity for biological control. Bull Ent Soc Am 15:237–240Google Scholar
  23. Li ZZ, Gao M, Hui C, Han XZ, Shi HH (2005) Impact of predator pursuit and prey evasion on synchrony and spatial patterns in metapopulation. Ecol Model 185:245–254CrossRefGoogle Scholar
  24. Markowitz HM (1952) Portfolio selection. J Finance 7:77–91Google Scholar
  25. McDonnell MD, Abbott D (2009) What is stochastic resonance? Definitions, misconceptions, debates, and its relevance to biology. PLoS Comput Biol 5:e1000348CrossRefPubMedPubMedCentralGoogle Scholar
  26. Morin X, Lechowicz MJ (2008) Contemporary perspectives on the niche that can improve models of species range shifts under climate change. Biol Lett 4:573–576CrossRefPubMedPubMedCentralGoogle Scholar
  27. Murray JD (2001) Mathematical biology: I. An introduction. Springer, BerlinGoogle Scholar
  28. Murray JD (2003) Mathematical biology: II. Spatial models and biomedical applications. Springer, BerlinGoogle Scholar
  29. Ovaskainen O, Meerson B (2010) Stochastic models of population extinction. Trends Ecol Evol 25:643–652CrossRefPubMedGoogle Scholar
  30. Ramanantoanina A, Hui C (2016) Formulating spread of species with habitat dependent growth and dispersal in heterogeneous landscapes. Math Biosci 275:51–56CrossRefPubMedGoogle Scholar
  31. Ramanantoanina A, Hui C, Ouhinou A (2011) Effects of density-dependent dispersal behaviours on the speed and spatial patterns of range expansion in predator-prey metapopulation. Ecol Model 222:3457–3650CrossRefGoogle Scholar
  32. Ramanantoanina A, Ouhinou A, Hui C (2014) Spatial assortment of mixed propagules explains the acceleration of range expansion. PLoS One 9:e103409CrossRefPubMedPubMedCentralGoogle Scholar
  33. Reluga TC (2016) The importance of being atomic: ecological invasions as random walks instead of waves. Theor Popul Biol 112:157–169CrossRefPubMedGoogle Scholar
  34. Ricker WE (1954) Stock and recruitment. J Fish Res Board Can 11:559–623CrossRefGoogle Scholar
  35. Ripa J, Ranta E (2007) Biological filtering of correlated environments: towards a generalised Moran theorem. Oikos 116:783–792CrossRefGoogle Scholar
  36. Roura-Pascual N, Bas JM, Thuiller W, Hui C, Krug RM, Brotons L (2009) From introduction to equilibrium: reconstructing the invasive pathways of the argentine ant in a Mediterranean region. Glob Chang Biol 15:2101–2115CrossRefGoogle Scholar
  37. Roura-Pascual N, Hui C, Ikeda T, Leday G, Richardson DM, Carpintero S, Espadaler X, Gómez C, Guénard B, Hartley S, Krushelnycky P, Lester PJ, McGeoch MA, Menke SB, Pedersen JS, Pitt JP, Reyes J, Sanders NJ, Suarez AV, Touyama Y, Ward D, Ward PS, Worner SP (2011) Relative roles of climatic suitability and anthropogenic influence in determining the pattern of spread in a global invader. Proc Natl Acad Sci U S A 108:220–225CrossRefPubMedGoogle Scholar
  38. Roy M, Holt RD, Barfield M (2005) Temporal autocorrelation can enhance the persistence and abundance of metapopulations comprised of coupled sinks. Am Nat 166:246–261CrossRefPubMedGoogle Scholar
  39. Shigesada N, Kawasaki K, Teramoto E (1986) Travelling periodic waves in heterogeneous environments. Theor Popul Biol 30:143–160CrossRefGoogle Scholar
  40. Shigesada N, Kawasaki K (1997) Biological invasions: theory and practice. Oxford University Press, OxfordGoogle Scholar
  41. Shine R, Brown GP, Phillips BL (2011) An evolutionary process that assembles phenotypes through space rather than through time. Proc Natl Acad Sci U S A 108:5708–5711CrossRefPubMedPubMedCentralGoogle Scholar
  42. van Nouhuys S (2016) Metapopulation ecology. eLS.  https://doi.org/10.1002/9780470015902.a0021905.pub2
  43. Volpert V, Petrovskii S (2009) Reaction-diffusion waves in biology. Phys Life Rev 6:267–310CrossRefPubMedGoogle Scholar

Copyright information

© The Author(s), under exclusive licence to Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Cang Hui
    • 1
  • Pietro Landi
    • 1
  • Henintsoa Onivola Minoarivelo
    • 1
  • Andriamihaja Ramanantoanina
    • 1
  1. 1.Department of Mathematical SciencesStellenbosch UniversityStellenboschSouth Africa

Personalised recommendations