Advertisement

Improving Burden of Disease and Source Attribution Estimates

  • Barbara B. Kowalcyk
  • Sara M. Pires
  • Elaine Scallan
  • Archana Lamichhane
  • Arie H. Havelaar
  • Brecht Devleesschauwer
Chapter
Part of the Food Microbiology and Food Safety book series (FMFS)

Abstract

Disease burden estimates provide the foundation for evidence-informed policy making and are critical to public health priority setting around food safety. Several efforts have recently been undertaken to better quantify the burden of foodborne disease, but there is still much work to be done. While burden estimates are crucial to raising awareness of foodborne diseases, estimating their public health impact, and ranking diseases according to their importance, they may be insufficient for policy making. Knowledge on the most important sources of foodborne disease is key to identifying and prioritizing food safety intervention strategies and preventing and reducing the burden of diseases in a population.

This chapter outlines areas of improvement that would lead to improved estimates including enhancing foodborne disease surveillance infrastructure and improving our understanding of the burden of foodborne chemical exposures and chronic sequelae and provides an overview of attributing the burden of foodborne disease to specific foods.

Keywords

Burden Foodborne disease Health impact Sequelae Source attribution 

Abbreviations

AF

Aflatoxin

CD

Crohn’s disease

CDC

US Centers for Disease Control and Prevention

CeD

Celiac disease

CIDT

Culture-independent diagnostic test

DALY

Disability-adjusted life year

ECDC

European Centre for Disease Prevention and Control

EED

Environmental enteric dysfunction

EFSA

European Food Safety Authority

ETEC

Enterotoxigenic Escherichia coli

ExPEC

Extraintestinal pathogenic E. coli

FAO

Food and Agriculture Organization of the United Nations

FBD

Foodborne disease

FERG

WHO Foodborne Disease Burden Epidemiology Reference Group

FGD

Functional gastrointestinal disorders

FUTI

Foodborne urinary tract infection

GBS

Guillain-Barré syndrome

GMI

Global Microbial Identifier

HUS

Hemolytic uremic syndrome

IBD

Inflammatory bowel disease

IBS

Inflammatory bowel syndrome

JECFA

Joint FAO/WHO Expert Committee on Food Additives

LTHO

Long-term health outcomes

OR

Odds ratio

PAF

Population attributable fraction

PCR

Polymerase chain reaction

PI-IBS

Post-infectious irritable bowel syndrome

QALY

Quality-adjusted life year

ReA

Reactive arthritis

RR

Relative risk

STEC

Shiga toxin-producing E. coli

UC

Ulcerative colitis

UTI

Urinary tract infection

WGS

Whole genome sequencing

WHO

World Health Organization

References

  1. Adak GK, Meakins SM, Yip H, Lopman BA, O’Brien SJ. Disease risks from foods, England and Wales, 1996-2000. Emerg Infect Dis. 2005;11(3):365–72.  https://doi.org/10.3201/eid1103.040191. CrossRefGoogle Scholar
  2. Ajene AN, Fischer Walker CL, Black RE. Enteric pathogens and reactive arthritis: a systematic review of Campylobacter, Salmonella and Shigella-associated reactive arthritis. J Health Popul Nutr. 2013;31(3):299–307.CrossRefGoogle Scholar
  3. Alborzi S, Pourabbas B, Rashidi M, Astaneh B. Aflatoxin M1 contamination in pasteurized milk in Shiraz (south of Iran). Food Control. 2006;17:582–4.CrossRefGoogle Scholar
  4. Amour C, Gratz J, Mduma E, Svensen E, Rogawski ET, McGrath M, et al. Epidemiology and impact of Campylobacter infection in children in 8 low-resource settings: results from the MAL-ED study. Clin Infect Dis. 2016;63(9):1171–9.Google Scholar
  5. Andreoli SP, Trachtman H, Acheson DW, Siegler RL, Obrig TG. Hemolytic uremic syndrome: epidemiology, pathophysiology, and therapy. Pediatr Nephrol. 2002;17:293–8.CrossRefGoogle Scholar
  6. Bale JF Jr, Brasher C, Siegler RL. CNS manifestations of the hemolyticuremic syndrome. Relationship to metabolic alterations and prognosis. Am J Dis Child. 1980;134(9):869–72.CrossRefGoogle Scholar
  7. Barbara G, Cremon C, Pallotti F, De Giorgio R, Stanghellini V, Corinaldesi R. Postinfectious irritable bowel syndrome. J Pediatr Gastroenterol Nutr. 2009;48(Suppl 2):S95–7.CrossRefGoogle Scholar
  8. Batz MB, Doyle MP, Morris JG, Painter J, Singh R, Tauxe RV, Taylor MR, DMA LFW, The Food Attribution Working Group. Attributing illness to food. Emerg Infect Dis. 2005;11:993–9.CrossRefGoogle Scholar
  9. Batz MB, Hoffmann S, Morris JG. Ranking the disease burden of 14 pathogens in food sources in the United States using attribution data from outbreak investigations and expert elicitation. J Food Prot. 2012;75(7):1278–91.CrossRefGoogle Scholar
  10. Batz M, Henke E, Kowalcyk B. Long-term consequences of foodborne infections. Infect Dis Clin North Am. 2013;27(3):599–616.CrossRefGoogle Scholar
  11. Bauer A, Loos S, Wehrmann C, Horstmann D, Donnerstag F, Lemke J, Hillebrand G, Löbel U, Pape L, Haffner D, Bindt C, Ahlenstiel T, Melk A, Lehnhardt A, Kemper MJ, Oh J, Hartmann H. Neurological involvement in children with E. coli O104:H4-induced hemolytic uremic syndrome. Pediatr Nephrol. 2014;29:1607–15.CrossRefGoogle Scholar
  12. Bernsen RA, de Jager AE, Schmitz PI, van der Meché FG. Long-term impact on work and private life after Guillain-Barré syndrome. J Neurol Sci. 2002;201(1–2):13–7.CrossRefGoogle Scholar
  13. Bhutta ZA, Das JK, Rizvi A, Gaffey MF, Walker N, Horton S, Webb P, Lartey A, Black RE, Lancet Nutrition Interventions Review Group, The Maternal and Child Nutrition Study Group. Evidence-based interventions for improvement of maternal and child nutrition: what can be done and at what cost? Lancet. 2013;382(9890):452–77.CrossRefGoogle Scholar
  14. Bolton DJ, Robertson LJ. Mental health disorders associated with foodborne pathogens. J Food Prot. 2016;79(11):2005–17.CrossRefGoogle Scholar
  15. Brandal LT, Wester AL, Lange H, Lobersli I, Lindstedt BA, Vold L, Kapperud G. Shiga toxin-producing Escherichia coli infections in Norway, 1992–2012: characterization of isolates and identification of risk factors for haemolytic uremic syndrome. BMC Infect Dis. 2015;15:324.CrossRefGoogle Scholar
  16. Buder K, Latal B, Nef S, Neuhaus TJ, Laube GF, Spartà G. Neurodevelopmental long-term outcome in children after hemolytic uremic syndrome. Pediatr Nephrol. 2015;30(3):503–13.CrossRefGoogle Scholar
  17. Byrne L, Jenkins C, Launders N, Elson R, Adak GK. The epidemiology, microbiology and clinical impact of Shiga toxin-producing Escherichia coli in England, 2009–2012. Epidemiol Infect. 2015;143(16):3475–87.CrossRefGoogle Scholar
  18. Campbell DI, Elia M, Lunn PG. Growth faltering in rural Gambian infants is associated with impaired small intestinal barrier function, leading to endotoxemia and systemic inflammation. J Nutr. 2003;133(5):1332–8.CrossRefGoogle Scholar
  19. Caulfield LE, de Onis M, Blossner M, Black RE. Undernutrition as an underlying cause of child associated with diarrhea, pneumonia, malaria, and measles. Am J Clin Nutr. 2004;80(1):193–8.CrossRefGoogle Scholar
  20. Centers for Disease Control and Prevention (CDC), Atlanta, GA: U.S. Centers for Disease Control and Prevention (updated 13 January 2012). Aflatoxin. http://www.cdc.gov/nceh/hsb/chemicals/aflatoxin.htm. Accessed Aug 11, 2015.
  21. Centers for Disease Control and Prevention (CDC), Atlanta, GA: U.S. Centers for Disease Control and Prevention (updated 7 December 2015). FoodNet Surveillance. https://www.cdc.gov/foodnet/surveillance.html. Accessed 30 Oct 2017.
  22. Chalker RB, Blaser MJA. Review of human salmonellosis: III. Magnitude of Salmonella infection in the United States. Rev Infect Dis. 1998;10(1):111–24.CrossRefGoogle Scholar
  23. Chen L, Geys H, Cawthraw S, Havelaar A, Teunis P. Dose response for infectivity of several strains of Campylobacter jejuni in chickens. Risk Anal. 2006;26:1613–1.CrossRefGoogle Scholar
  24. Clark WF, Sontrop J, Macnab JJ, Salvadori M, Moist L, Suri R, Garg AX. Long term risk for hypertension, renal impairment, and cardiovascular disease after gastroenteritis from drinking water contaminated with Escherichia coli O157:H7: a prospective cohort study. BMJ. 2010;341:c6020.  https://doi.org/10.1136/bmj.c6020.CrossRefGoogle Scholar
  25. Cooke RM. Experts in uncertainty—opinion and subjective probability in science. Environmental ethics and science policy series. Oxford: Oxford University Press; 1991.Google Scholar
  26. Crane RJ, Kelsey DJJ, Berkley JA. Environmental enteric dysfunction: an overview. Food Nutr Bull. 2015;36(10):S76–87.CrossRefGoogle Scholar
  27. Cronquist AB, Mody RK, Atkinson R, Besser J, D’Angelo MT, Hurd S, Robinson T, Nicholson C, Mahon BE. Impacts of culture-independent diagnostic practices on public health surveillance for bacterial enteric pathogens. Clin Infect Dis. 2012;54(Suppl 5):S432–9.  https://doi.org/10.1093/cid/cis267.CrossRefGoogle Scholar
  28. Crump KS, Canady R, Kogevinas M. Meta-analysis of dioxin cancer dose response for three occupational cohorts. Environ Health Perspect. 2003;111:681–7.CrossRefGoogle Scholar
  29. Dai C, Jiang M. The incidence and risk factors of post-infectious irritable bowel syndrome: a meta-analysis. Hepatogastroenterology. 2012;59(113):67–2.  https://doi.org/10.5754/hge10796.CrossRefGoogle Scholar
  30. Davidson VJ, Ravel A, Nguyen TN, Fazil A, Ruzante JM. Food-specific attribution of selected gastrointestinal illnesses: estimates from a Canadian expert elicitation survey. Foodborne Pathog Dis. 2011;8(9):983–5.CrossRefGoogle Scholar
  31. De Boer MD, Lima AA, Oriá RB, Scharf RJ, Moore SR, Luna MA, Guerrant RL. Early childhood growth failure and the developmental origins of adult disease: do enteric infections and malnutrition increase risk for the metabolic syndrome? Nutr Rev. 2012;70(11):642–53.CrossRefGoogle Scholar
  32. De Wit MAS, Koopmans MPG, Kortbeek LM, Van Leeuwen NJ, Bartelds AIM, van Duynhoven YT. Gastroenteritis in sentinel general practices, The Netherlands. Emerg Infect Dis. 2001a;7:82–1.CrossRefGoogle Scholar
  33. De Wit MA, Koopmans MP, Kortbeek LM, Van Leeuwen NJ, Vinje J, van Duynhoven YT. Etiology of gastroenteritis in sentinel general practices in the Netherlands. Clin Infect Dis. 2001b;33:280–8.CrossRefGoogle Scholar
  34. De Wit MA, Koopmans MP, Kortbeek LM, Wannet WJ, Vinje J, Van Leusden F, Bartelds AI, van Duynhoven YT. Sensor, a population-based cohort study on gastroenteritis in the Netherlands: incidence and etiology. Am J Epidemiol. 2001c;154:666–74.CrossRefGoogle Scholar
  35. Deising A, Gutierrez RL, Porter CK, Riddle MS. Postinfectious functional gastrointestinal disorders: a focus on epidemiology and research agendas. Gastroenterol Hepatol. 2013;9(3):145–7.Google Scholar
  36. Devleesschauwer B, Haagsma JA, Angulo FJ, Bellinger DC, Cole D, Döpfer D, Fazil A, Fèvre EM, Gibb HJ, Hald T, Kirk MD, Lake RJ, Maertens de Noordhout C, Mathers CD, McDonald SA, Pires SM, Speybroeck N, Thomas MK, Torgerson PR, Wu F, Havelaar AN, Praet N. Methodological framework for World Health Organization estimates of the global burden of foodborne disease. PLoS One. 2015;10(12):e0142498.  https://doi.org/10.1371/journal.pone.0142498.CrossRefGoogle Scholar
  37. Dewey KG, Adu-Afarwuah S. Systematic review of the efficacy and effectiveness of complementary feeding interventions in developing countries. Matern Child Nutr. 2008;4(Suppl 1):24–85.CrossRefGoogle Scholar
  38. Domingues AR, Pires SM, Halasa T, Hald T. Source attribution of human salmonellosis using a meta-analysis of case-control studies of sporadic infections. Epidemiol Infect. 2012a;140(6):959–69.CrossRefGoogle Scholar
  39. Domingues AR, Pires SM, Halasa T, Hald T. Source attribution of human campylobacteriosis using a meta-analysis of case-control studies of sporadic infections. Epidemiol Infect. 2012b;140(6):970–81.CrossRefGoogle Scholar
  40. Dunlop SP, Jenkins D, Spiller RC. Distinctive clinical, psychological, and histological features of postinfective irritable bowel syndrome. Am J Gastroenterol. 2003;98(7):1578–83.CrossRefGoogle Scholar
  41. DuPont AW. Postinfectious irritable bowel syndrome. Clin Infect Dis. 2008;46(4):594–9.CrossRefGoogle Scholar
  42. Eriksson KJ, Boyd SG, Tasker RC. Acute neurology and neurophysiology of haemolytic-uraemic syndrome. Arch Dis Child. 2001;84(5):434–5.CrossRefGoogle Scholar
  43. Esan OB, Pearce M, van Hecke O, Roberts N, Collins DRJ, Violato M, McCarthy N, Perera R, Fanshawe TR. Factors associated with sequelae of Campylobacter and non-typhoidal Salmonella infections: a systematic review. EBioMedicine. 2017;15:100–11.CrossRefGoogle Scholar
  44. Ethelberg S, Olsen KE, Scheutz F, Jensen C, Schiellerup P, Enberg J, Petersen AM, Olesen B, Gerner-Smidt P, Molbak K. Virulence factors for hemolytic uremic syndrome, Denmark. Emerg Infect Dis. 2004;10(5):842–7.CrossRefGoogle Scholar
  45. European Food Safety Authority Panel on Biological Hazards (EFSA). Scientific opinion on the evaluation of molecular typing methods for major food-borne microbiological hazards and their use for attribution modelling, outbreak investigation and scanning surveillance: part 1 (evaluation of methods and applications). EFSA J. 2013;11(12):3502.  https://doi.org/10.2903/j.efsa.2013.3502. Available online: www.efsa.europa.eu/efsajournal CrossRefGoogle Scholar
  46. Evers EG, Van Der Fels-Klerx HJ, Nauta MJ, Schijven JF, Havelaar AH. Campylobacter source attribution by exposure assessment. Int J Risk Assess Manag. 2008;  https://doi.org/10.1504/IJRAM.2008.016151.CrossRefGoogle Scholar
  47. Flint JA, van Duynhoven YT, Angulo FJ, DeLong SM, Braun P, Kirk M, Scallan E, Fitzgerald M, Adak GK, Sockett P, Ellis A, Hall G, Gargouri N, Walke H, Braam P. Estimating the burden of acute gastroenteritis, foodborne disease, and pathogens commonly transmitted by food: an international review. Clin Infect Dis. 2005;41(5):698–704.  https://doi.org/10.1086/432064.CrossRefGoogle Scholar
  48. Food and Drug Administration (FDA). Quantitative assessment of the relative risk to public health from foodborne Listeria monocytogenes among selected categories of ready-to-rat foods. Center for Food Safety and Applied Nutrition (FDA) and Food Safety Inspection Service (USDA), 2003.Google Scholar
  49. Food and Drug Administration (FDA). Bad bug book: foodborne pathogenic microorganisms and natural toxins. 2nd ed. Center for Food Safety and Applied Nutrition (CFSAN) of the Food and Drug Administration (FDA), US Department of Health and Human Services, 2012.Google Scholar
  50. Frenzen PD. Economic cost of Guillain-Barré syndrome in the United States. Neurology. 2008;71(1):21–7.CrossRefGoogle Scholar
  51. Gagnadoux MF, Habib R, Gubler MC, Bacri JL, Broyer M. Long-term (15-25 years) outcome of childhood hemolytic-uremic syndrome. Clin Nephrol. 1996;46:39–41.Google Scholar
  52. Garcia Rodriguez LA, Ruigomez A, Panes J. Acute gastroenteritis is followed by an increased risk of inflammatory bowel disease. Gastroenterology. 2006;130:1588–94.CrossRefGoogle Scholar
  53. Garg AX, Suri RS, Barrowman N, Rehman F, Matsell D, Rosas-Arellano MP, Salvadori M, Haynes RB, Clark WF. Long-term renal prognosis of diarrhea associated hemolytic uremic syndrome: a systematic review, meta-analysis, and meta-regression. JAMA. 2003;290:1360–70.CrossRefGoogle Scholar
  54. Gianantonio CA, Vitacco M, Mendilaharzu F, Gallo G. The hemolytic-uremic syndrome. Renal status of 76 patients at long-term follow-up. J Pediatr. 1968;72(6):757–65.CrossRefGoogle Scholar
  55. Gibb H, Devleesschauwer B, Bolger PM, Wu F, Ezendam J, Cliff J, Zeilmaker M, Verger P, Pitt J, Baines J, Adegoke G, Afshari R, Liu Y, Bokkers B, van Loveren H, Mengelers M, Brandon E, Havelaar AH, Bellinger D. World Health Organization estimates of the global and regional disease burden of four foodborne chemical toxins, 2010: a data synthesis. F1000Res. 2015;4:1393.CrossRefGoogle Scholar
  56. Global Microbial Identifier (GMI). 2013. http://www.globalmicrobialidentifier.org/about-gmi/vision-and-objectives. Assessed June 2017.
  57. Gould LH, Demma L, Jones TF, Hurd S, Vugia DJ, Smith K, Shiferaw B, Segler S, Palmer A, Zansky S, Griffin PM. Hemolytic uremic syndrome and death in persons with Escherichia coli O157:H7 infection, foodborne diseases active surveillance network sites, 2000-2006. Clin Infect Dis. 2009;49:1480–5.CrossRefGoogle Scholar
  58. Gould LH, Mody RK, Ong KL, Clogher P, Cronquist AB, Garman KN, Lathrop S, Medus C, Spina NL, Webb TH, White PL, Wymore K, Gierke RE, Mahon BE, Griffin PM, Emerging Infections Program Foodnet Working Group. Increased recognition of non-O157 Shiga toxin-producing Escherichia coli infections in the United States during 2000–2010: epidemiologic features and comparison with E. coli O157 infections. Foodborne Pathog Dis. 2013;10(5):453–60.CrossRefGoogle Scholar
  59. Gradel KO, Nielsen HL, Schønheyder HC, Ejlertsen T, Kristensen B, Nielsen H. Increased short- and long-term risk of inflammatory bowel disease after Salmonella or Campylobacter gastroenteritis. Gastroenterology. 2009;137:495–501.CrossRefGoogle Scholar
  60. Grantham-McGregor S, Cheung YB, Cueto S, Glewwe P, Richter L, Strupp B, International Child Development Steering Group. Developmental potential in the first 5 years for children in developing countries. Lancet. 2007;369(9555):60–70.CrossRefGoogle Scholar
  61. Guerrant R, Oriá RB, Moore SR, Oriá MO, Lima AA. Malnutrition as an enteric infectious disease with long-term effects on child development. Nutr Rev. 2008;66(9):487–505.CrossRefGoogle Scholar
  62. Gwee KA, Leong YL, Graham C, McKendrick MW, Collins SM, Walters SJ, Underwood JE, Read NW. The role of psychological and biological factors in postinfective gut dysfunction. Gut. 1999;44(3):400–6.CrossRefGoogle Scholar
  63. Haagsma JA, Geenen PL, Ethelberg S, Fetsch A, Hansdotter F, ansen A, Korsgaard H, O’Brien SJ, Scavia G, Spitznagel H, Stefanoff P, Tam CC, Havelaar AH, Med-Vet-Net Working Group. Community incidence of pathogen-specific gastroenteritis: reconstructing the surveillance pyramid for seven pathogens in seven European Union member states. Epidemiol Infect. 2013;141(8):1625–39.  https://doi.org/10.1017/S0950268812002166.CrossRefGoogle Scholar
  64. Hald T, Aspinall W, Devleesschauwer B, Cooke R, Corrigan T, Havelaar AH, Gibb HJ, Torgerson PR, Kirk MD, Angulo FJ, Lake RJ, Speybroeck N, Hoffmann S. World Health Organization estimates of the relative contributions of food to the Burden of disease due to selected foodborne hazards: a structured expert elicitation. PLoS One. 2016;11(1):e0145839.  https://doi.org/10.1371/journal.pone.0145839 CrossRefGoogle Scholar
  65. Hall G, Yohannes K, Raupach J, Becker N, Kirk M. Estimating community incidence of Salmonella, Campylobacter, and Shiga toxin-producing Escherichia coli infections, Australia. Emerg Infect Dis. 2008;14(10):1601–9.  https://doi.org/10.3201/eid1410.071042.CrossRefGoogle Scholar
  66. Halvorson H, Schlett C, Riddle M. Postinfectious irritable bowel syndrome—a meta-analysis. Am J Gastroenterol. 2006;101:1894–9.CrossRefGoogle Scholar
  67. Hannu T. Reactive arthritis. Best Pract Res Clin Rheumatol. 2011;25:347–57.CrossRefGoogle Scholar
  68. Havelaar AH, Bräunig J, Christiansen K, Cornu M, Hald T, Mangen MJ, Mølbak K, Pielaat A, Snary E, Van Pelt W, Velthuis A, Wahlström H. Towards an integrated approach in supporting microbiological food safety decisions. Zoonoses Public Health. 2007a;54(3–4):103–17.CrossRefGoogle Scholar
  69. Havelaar AH, Kemmeren JM, Kortbeek LM. Disease burden of congenital toxoplasmosis. Clin Infect Dis. 2007b;44:1467–74.CrossRefGoogle Scholar
  70. Havelaar AH, Galindo AV, Kurowicka D, Cooke RM. Attribution of foodborne pathogens using structured expert elicitation. Foodborne Pathog Dis. 2008;5:649–59.CrossRefGoogle Scholar
  71. Havelaar AH, Haagsma JA, Mangen MJ, Kemmeren JM, Verhoef LP, Vijgen SM, Wilson M, Friesema IH, Kortbeek LM, van Duynhoven YT, van Pelt W. Disease burden of foodborne pathogens in the Netherlands, 2009. Int J Food Microbiol. 2012;156(3):231–8.CrossRefGoogle Scholar
  72. Havelaar AH, Kirk MD, Torgerson PR, Gibb HJ, Hald T, Lake RJ, Praet N, Bellinger DC, de Silva NR, Gargouri N, Speybroeck N, Cawthorne A, Mathers C, Stein C, Angulo FJ, Devleesschauwer B, World Health Organization Foodborne Disease Burden Epidemiology Reference Group. World Health Organization global estimates and regional comparisons of the burden of foodborne disease in 2010. PLoS Med. 2015;12:e1001923.CrossRefGoogle Scholar
  73. Helms M, Vastrup P, Gerner-Smidt P, Mølbak K. Short and long term mortality associated with foodborne bacterial gastrointestinal infections: registry based study. BMJ. 2003;326:357.CrossRefGoogle Scholar
  74. Hughes RA, Cornblath DR. Guillain-Barré syndrome. Lancet. 2005;366:1653–66.CrossRefGoogle Scholar
  75. Humphrey JH. Child undernutrition, tropical enteropathy, toilets and handwashing. Lancet. 2009;374:1032–5.CrossRefGoogle Scholar
  76. Ilnyckyj A, Balachandra B, Elliott L, Choudhri S, Duerksen DR. Post-traveler’s diarrhea irritable bowel syndrome: a prospective study. Am J Gastroenterol. 2003;98:596–9.CrossRefGoogle Scholar
  77. Ingram M, St John J, Applewhaite T, Gaskin P, Springer K, Indar L. Population-based estimates of acute gastrointestinal and foodborne illness in Barbados: a retrospective cross-sectional study. J Health Popul Nutr. 2013;31(4 Suppl 1):81–97.Google Scholar
  78. International Agency for Research in Cancer (IARC). Ochratoxin A. In some naturally occurring substances; food items and constituents, heterocyclic aromatic amines and mycotoxins. In: IARC monographs on the evaluation of carcinogenic risks to humans, vol. 56. Lyon: IARC; 1993. p. 489–521.Google Scholar
  79. Jakobsen LS, Nauta M, Knudsen VK, Pires SM, Poulsen M. Burden of disease estimates of cancer caused by dietary exposure to acrylamide: how methodological choices affect the outcome. Toxicol Lett. 2015;238(2):115.  https://doi.org/10.1016/j.toxlet.2015.08.371 CrossRefGoogle Scholar
  80. Jamison DT, Shahid-Salles SA, Jamison J, Lawn JE, Zupan J. chap. Incorporating deaths near the time of birth into estimates of the global burden of disease. In: Global burden of disease and risk factors. Washington: World Bank Publications; 2006.Google Scholar
  81. Jess T, Simonsen J, Nielsen NM, Jørgensen KT, Bager P, Ethelberg S, Frisch M. Enteric Salmonella or Campylobacter infections and the risk of inflammatory bowel disease. Gut. 2011;60:318–24.CrossRefGoogle Scholar
  82. Jones TF, McMillian MB, Scallan E, Frenzen PD, Cronquist AB, Thomas S, Angulo FJA. Population-based estimate of the substantial burden of diarrhoeal disease in the United States; FoodNet, 1996-2003. Epidemiol Infect. 2007;135(2):293–301.  https://doi.org/10.1017/S0950268806006765. CrossRefGoogle Scholar
  83. Karpman D, Håkansson A, Perez MT, Isaksson C, Carlemalm E, Caprioli A, Svanborg C. Apoptosis of renal cortical cells in the hemolytic-uremic syndrome: in vivo and in vitro studies. Infect Immun. 1998;66:636–44.Google Scholar
  84. Keithlin J, Sargeant J, Thomas MK, Fazil A. Chronic sequelae of E. coli O157: systematic review and meta-analysis of the proportion of E. coli O157 cases that develop chronic sequelae. Foodborne Pathog Dis. 2014a;11(2):79–95.CrossRefGoogle Scholar
  85. Keithlin J, Sargeant J, Thomas MK, Fazil A. Systematic review and meta-analysis of the proportion of Campylobacter cases that develop chronic sequelae. BMC Public Health. 2014b;14:1203.CrossRefGoogle Scholar
  86. Keithlin J, Sargeant JM, Thomas MK, Fazil A. Systematic review and meta-analysis of the proportion of non-typhoidal Salmonella cases that develop chronic sequelae. Epidemiol Infect. 2015;143(7):1333–51.CrossRefGoogle Scholar
  87. Kelles A, Van Dyck M, Proesmans W. Childhood haemoltyic uraemic syndrome: long-term outcome and prognostic features. Eur J Pediatr. 1994;153:38–42.CrossRefGoogle Scholar
  88. Kelly P, Menzies I, Crane R, Zulu I, Nickols C, Feakins R, Mwansa J, Mudenda V, Katubulushi M, Greenwald S, Farthing M. Responses of small intestinal architecture and function over time to environmental factors in a tropical population. Am J Trop Med Hyg. 2004;70(4):412–9.CrossRefGoogle Scholar
  89. Keusch GT, Rosenberg IH, Denno DM, Duggan C, Guerrant RL, Lavery JV, Tarr PI, Ward HD, Black RE, Nataro JP, Ryan ET, Bhutta ZA, Coovadia H, Lima A, Ramakrishna B, Zaidi AKM, Hay Burgess DC, Brewer T. Implications of acquired environmental enteric dysfunction for growth and stunting in infants and children living in low- and middle-income countries. Food Nutr Bull. 2013;34(3):357–64.CrossRefGoogle Scholar
  90. Kirk M, Ford L, Glass K, Hall G. Foodborne illness, Australia, circa 2000 and circa 2010. Emerg Infect Dis. 2014;20(11):1857–64.  https://doi.org/10.3201/eid2011.131315.CrossRefGoogle Scholar
  91. Kosmider RD, Nally P, Simons RLR, Brouwer A, Cheung S, Snary EL, Wooldridge M. Attribution of human VTEC O157 infection from meat products: a quantitative risk assessment approach. Risk Anal. 2010;30:753–65.CrossRefGoogle Scholar
  92. Kotloff KL, Nataro JP, Blackwelder WC, Nasrin D, Farag TH, Panchalingam S, Wu Y, Sow SO, Sur D, Breiman RF, Faruque AS, Zaidi AK, Saha D, Alonso PL, Taboura B, Sanogo D, Onwuchekwa U, Manna B, Ramamurthy T, Kanungo S, Ochieng JB, Omore R, Oundo JO, Hossain A, Das SK, Ahmed S, Qureshi S, Quadri F, Adegbola RA, Antonio M, Hossain MJ, Akinsola A, Mandomando I, Nhampossa T, Acácio S, Biswas K, O’Reilly CE, Mintz ED, Berkeley LY, Muhsen K, Sommerfelt H, Robins-Browne RM, Levine MM. Burden and aetiology of diarrhoeal disease in infants and young children in developing countries (the global enteric multicenter study, GEMS): a prospective, case-control study. Lancet. 2013;382(9888):209–22.CrossRefGoogle Scholar
  93. Kowalcyk B, Smeets H, Succop P, DeWit N, Havelaar A. Relative risk of irritable bowel syndrome following acute gastroenteritis and associated risk factors. Epidemiol Infect. 2013;13:1–10.Google Scholar
  94. Lake RJ, Cressey PJ, Campbell DM, Oakley E. Risk ranking for foodborne microbial hazards in New Zealand: burden of disease estimates. Risk Anal. 2010;30(5):743–52.CrossRefGoogle Scholar
  95. Launders N, Byrne L, Jenkins C, Harker K, Charlett A, Adak GK. Disease severity of Shiga toxin-producing E. coli O157 and factors influencing the development of typical haemolytic uraemic syndrome: a retrospective cohort study, 2009–2012. BMJ Open. 2016;6(1):e009933.CrossRefGoogle Scholar
  96. Locke GR 3rd, Zinsmeister AR, Talley NJ, Fett SL, Melton LJ. Risk factors for irritable bowel syndrome: role of analgesics and food sensitivities. Am J Gastroenterol. 2000;95(1):157–65.CrossRefGoogle Scholar
  97. Lomonaco S, Nucera D, Filipello V. The evolution and epidemiology of Listeria monocytogenes in Europe and the United States. Infect Genet Evol. 2015;35:172–83.CrossRefGoogle Scholar
  98. Löwe B, Andresen V, Faedrich K, Gapprnayer K, Wedgscheider K, Treszl A, Riegel B, Rose M, Lohse AW, Broicher W. Psychological outcome, fatigue, and quality of life after infection with Shiga toxin-producing Escherichia coli O104. Clin Gastroenterol Hepatol. 2014;12:1848–55.CrossRefGoogle Scholar
  99. Maertens de Noordhout C, Devleesschauwer B, Angulo FJ, Verbeke G, Haagsma J, Kirk M, Havelaar A, Speybroeck N. The global burden of listeriosis: a systematic review and meta-analysis. Lancet Infect Dis. 2014;14:1073–82.CrossRefGoogle Scholar
  100. Magnus T, Rother J, Simova O, Meier-Cillien M, Repenthin J, Möller F, Gbadamosi J, Panzer U, Wengenroth M, Hagel C, Kluge S, Stahl RK, Wegscheider K, Urban P, Eckert B, Glatzel M, fiehler J, Gerloff C. The neurological syndrome in adults during the 2011 northern German E. coli serotype O104:H4 outbreak. Brain. 2012;135:1850–9.CrossRefGoogle Scholar
  101. Mangen MJ, Bouwknegt M, Friesema IH, Haagsma JA, Kortbeek LM, Tariq L, Wilson M, van Pelt W, Havelaar AH. Cost-of-illness and disease burden of food-related pathogens in the Netherlands, 2011. Int J Food Microbiol. 2014;196:84–93.CrossRefGoogle Scholar
  102. Manges AR, Smith SP, Lau BJ, Nuval CJ, Eisenberg JN, Dietrich PS, Riley LW. Retail meat consumption and the acquisition of antimicrobial resistant Escherichia coli causing urinary tract infections: a case-control study. Foodborne Pathog Dis. 2007;4:419–31.CrossRefGoogle Scholar
  103. Marshall JK, Thabane M, Garg AX, Clark W, Meddings J, Collins SM, WEL Investigators. Intestinal permeability in patients with irritable bowel syndrome after a waterborne outbreak of acute gastroenteritis in Walkerton, Ontario. Aliment Pharmacol Ther. 2004;20(11–12):1317–22.CrossRefGoogle Scholar
  104. Marshall JK, Thabane M, Garg AX, Clark WF, Salvadori M, Collins SM, Walkerton Health Study Investigators. Incidence and epidemiology of irritable bowel syndrome after a large waterborne outbreak of bacterial dysentery. Gastroenterology. 2006;131:445–50.CrossRefGoogle Scholar
  105. Marshall JK, Thabane M, Borgaonkar MR, James C. Postinfectious irritable bowel syndrome after a food-borne outbreak of acute gastroenteritis attributed to a viral pathogen. Clin Gastroenterol Hepatol. 2007;5(4):457–60.CrossRefGoogle Scholar
  106. Marshall J, Thabane M, Garg AX, Clark WF, Moayyedi P, Collins SM, Walkerton Health Study Investigators. Eight year prognosis of post infectious irritable bowel syndrome following waterborne bacterial dysentery. Gut. 2010;59(5):605–11.CrossRefGoogle Scholar
  107. Mayer CL, Leibowitz CS, Kurosawa S, Sterns-Kurosawa DJ. Shiga toxins and the pathophysiology of hemolytic uremic syndrome in humans and animals. Toxins (Basel). 2012;4:1261–87.CrossRefGoogle Scholar
  108. Mbuya MN, Humphrey JH. Preventing environmental enteric dysfunction through improved water, sanitation and hygiene: an opportunity for stunting reduction in developing countries. Matern Child Nutr. 2016;12(Suppl 1):106–20.CrossRefGoogle Scholar
  109. McCarthy N, Giesecke J. Incidence of Guillain-Barré syndrome following infection with Campylobacter jejuni. Am J Epidemiol. 2001;153(6):610–4.CrossRefGoogle Scholar
  110. McCormick BJJ, Lang DR. Diarrheal disease and enteric infections in LMIC communities: how big is the problem? Trop Dis Travel Med Vaccines. 2016;2:11.  https://doi.org/10.1186/s40794-016-0028-7.CrossRefGoogle Scholar
  111. McGrogan A, Madle GC, Seaman HE, de Vries CS. The epidemiology of Guillain-Barré syndrome worldwide. A systematic literature review. Neuroepidemiology. 2009;32(2):150–63.CrossRefGoogle Scholar
  112. Mead PS, Slutsker L, Dietz V, McCaig LF, Bresee JS, Shapiro C, Griffin PM, Tauxe RV. Food-related illness and death in the United States. Emerg Infect Dis. 1999;5(5):607–25.CrossRefGoogle Scholar
  113. Mody RK, Gu W, Griffin PM, Jones TF, Rounds J, Shiferaw B, Tobin-D’Angelo M, Smith G, Spina N, Hurd S, Lathrop S, Palmer A, Boothe E, Luna-Gierke RE, Hoekstra RM. Postdiarrheal hemolytic uremic syndrome in United States children: clinical spectrum and predictors of in-hospital death. J Pediatr. 2015;166:1022–9.CrossRefGoogle Scholar
  114. Moore JE, Corcoran D, Dooley JS, Fanning S, Lucey B, Matsuda M, McDowell DA, Megraud F, Millar BC, O’Mahony R, O’Riordan L, O’Rourke M, Rao JR, Rooney PJ, Sails A, Whyte P. Campylobacter. Vet Res. 2005;36(3):351–82.CrossRefGoogle Scholar
  115. Mori M, Kuwabara S, Miyake M, Noda M, Kuroki H, Kanno H, Ogawara K, Hattori T. Haemophilus influenzae infection and Guillain-Barré syndrome. Brain. 2000;123(Pt 10):2171–8.CrossRefGoogle Scholar
  116. Mylonakis E, Hohmann EL, Calderwood SB. Central nervous system infection with Listeria monocytogenes. 33 years’ experience at a general hospital and review of 776 episodes from the literature. Medicine. 1998;77:313–36.CrossRefGoogle Scholar
  117. Mylonakis E, Paliou M, Hohmann EL, Calderwood SB, Wing EJ. Listeriosis during pregnancy: a case series and review of 222 cases. Medicine. 2002;81:260–9.CrossRefGoogle Scholar
  118. Nathanson S, Kwon T, Elmaleh M, Charbit M, Launay EA, Harambat J, Brun M, Ranchin B, Bandin F, Cloarec S, Bourdat-Michel G, Piètrement C, Champion G, Ulinski T, Deschênes G. Acute neurological involvement in diarrhea-associated hemolytic uremic syndrome. Clin J Am Soc Nephrol. 2010;5(7):1218–28.CrossRefGoogle Scholar
  119. Neal K, Hebden J, Spiller R. Prevalence of gastrointestinal symptoms six months after bacterial gastroenteritis and risk factors for development of the irritable bowel syndrome: postal survey of patients. BMJ. 1997;314(7083):779–82.CrossRefGoogle Scholar
  120. Nicholl BI, Halder SL, Macfarlane GJ, Thompson DG, O’Brien S, Musleh M, McBeth J. Psychosocial risk markers for new onset irritable bowel syndrome—results of a large prospective population-based study. Pain. 2008;137(1):147–55.CrossRefGoogle Scholar
  121. Nordstrom L, Liu CM, Price LB. Foodborne urinary tract infections: a new paradigm for antimicrobial-resistant foodborne illness. Front Microbiol. 2013;4:29.CrossRefGoogle Scholar
  122. Nyati KK, Nyati R. Role of Campylobacter jejuni infection in the pathogenesis of Guillain-Barré syndrome: an update. Biomed Res Int. 2013;2013:852195.  https://doi.org/10.1155/2013/852195.CrossRefGoogle Scholar
  123. O’Brien SJ, Rait G, Hunter PR, Gray JJ, Bolton FJ, Tompkins DS, McLauchlin J, Letley LH, Adak GK, Cowden JM, Evans MR, Neal KR, Smith GE, Smyth B, Tam CC, Rodrigues LC. Methods for determining disease burden and calibrating national surveillance data in the United Kingdom: the second study of infectious intestinal disease in the community (IID2 study). BMC Med Res Methodol. 2010;10:39.  https://doi.org/10.1186/1471-2288-10-39.CrossRefGoogle Scholar
  124. Owino V, Ahmed T, Freemark M, Kelly P, Loy A, Manary M, Loechi C. Environmental enteric dysfunction and growth failure/stunting in global child health. Pediatrics. 2016;138(6)  https://doi.org/10.1542/peds.2016-0641.CrossRefGoogle Scholar
  125. Painter JA, Hoekstra RM, Ayers T, Tauxe RV, Braden CR, Angulo FJ, Griffin PM. Attribution of foodborne illnesses, hospitalizations, and deaths to food commodities by using outbreak data, United States, 1998-2008. Emerg Infect Dis. 2013;19(3):407–15.  https://doi.org/10.3201/eid1903.111866. CrossRefGoogle Scholar
  126. Phillips J, Millum J. Valuing stillbirths. Bioethics. 2015;29(6):413–23.CrossRefGoogle Scholar
  127. Pike BL, Porter CK, Sorrell TJ, Riddle MS. Acute gastroenteritis and the risk of functional dyspepsia: a systematic review and meta-analysis. Am J Gastroenterol. 2013;108(10):1558–63.CrossRefGoogle Scholar
  128. Pintar KDM, Thomas KM, Christidis T, Otten A, Nesbitt A, Marshall B, Pollari F, Hurst M, Ravel A. A comparative exposure assessment of Campylobacter in Ontario, Canada. Risk Anal. 2017;37(4):677–715.  https://doi.org/10.1111/risa.12653.CrossRefGoogle Scholar
  129. Pires SM. Assessing the applicability of currently available methods for attributing foodborne disease to sources, including food and food commodities. Foodborne Pathog Dis. 2013;10:206–13.CrossRefGoogle Scholar
  130. Pires SM, Evers EG, van Pelt W, Ayers T, Scallan E, Angulo FJ, Havelaar A, Hald T, Med-Vet-Net Workpackage 28 Working Group. Attributing the human disease burden of foodborne infections to specific sources. Foodborne Pathog Dis. 2009;6(4):417–24.CrossRefGoogle Scholar
  131. Pitzurra R, Fried M, Rogler G, Rammert C, Tschopp A, Hatz C, Steffen R, Mutsch M. Irritable bowel syndrome among a cohort of European travelers to resource-limited destinations. J Travel Med. 2011;18:250–6.CrossRefGoogle Scholar
  132. Platts-Mills JA, Babji S, Bodhidatta L, Gratz J, Haque R, Havt A, McCormick BJ, McGrath M, Olortequi MP, Samie A, Shakoor S, Mondal D, Lima IF, Hariraju D, Rayamajhi BB, Qureshi S, Kabir F, Yori PP, Mufamadi B, Amour C, Carreon JD, Richard SA, Lang D, Bessong P, Mduma E, Ahmed T, Lima AA, Mason CJ, Zaidi AK, Bhutta ZA, Kosek M, Guerrant RL, Gottlieb M, Miller M, Kang G, Houpt ER, MAL-ED Network Investigators. Pathogen-specific burdens of community diarrhoea in developing countries: a multisite birth cohort study (MAL-ED). Lancet Glob Health. 2015;3(9):e564–75.CrossRefGoogle Scholar
  133. Pope JE, Krizova A, Garg AX, Thiessen-Philbrook H, Ouimet JM. Campylobacter reactive arthritis: a systematic review. Semin Arthritis Rheum. 2007;37:48–55.CrossRefGoogle Scholar
  134. Poropatich KO, Walker CL, Black RE. Quantifying the association between Campylobacter infection and Guillain-Barré syndrome: a systematic review. J Health Popul Nutr. 2010;28:545–52.CrossRefGoogle Scholar
  135. Porter CK, Tribble DR, Aliaga PA, Halvorson HA, Riddle MS. Infectious gastroenteritis and risk of developing inflammatory bowel disease. Gastroenterology. 2008;135(3):781–6.CrossRefGoogle Scholar
  136. Porter CK, Gormley R, Tribble DR, Cash BD, Riddle MS. The incidence and gastrointestinal infectious risk of functional gastrointestinal disorders in a healthy US adult population. Am J Gastroenterol. 2011;106(1):130–8.CrossRefGoogle Scholar
  137. Porter CK, Choi D, Cash B, Pimentel M, Murray J, May L, Riddle MS. Pathogen-specific risk of chronic gastrointestinal disorders following bacterial causes of foodborne illness. BMC Gastroenterol. 2013a;13:46.CrossRefGoogle Scholar
  138. Porter CK, Choi D, Riddle MS. Pathogen-specific risk of reactive arthritis from bacterial causes of foodborne illness. J Rheumatol. 2013b;40(5):712–4.CrossRefGoogle Scholar
  139. Prendergast AJ, Humphrey JH. The stunting syndrome in developing countries. Paediatr Int Child Health. 2014;34(4):250–65.CrossRefGoogle Scholar
  140. Prendergast AJ, Humphrey JH, Mutasa K, Majo FD, Rukobo S, Govha M, Mbuya MN, Moulton LH, Stoltzfus RJ. Sanitation hygiene infant nutrition efficacy (SHINE) trial team. Assessment of environmental enteric dysfunction in the SHINE trial: methods and challenges. Clin Infect Dis. 2015;61(Suppl 7):S726–32.CrossRefGoogle Scholar
  141. Prüss-Üstün A, Mathers C, Corvalán C, Woodward A. In: Prüss-Üstün A, Campbell-Lendrum D, Corvalán C, Woodward A, editors. Assessing the environmental burden of disease at national and local levels. Introduction and methods, Environmental burden of disease series. Geneva: World Health Organization; 2003.Google Scholar
  142. Reddy KRN, Salleh B, Saad B, Abbas HK, Abel CA, Shier WT. An overview of mycotoxin contamination in foods and its implications for human health. Toxin Rev. 2010;29:3–26.CrossRefGoogle Scholar
  143. Richard SA, Black RE, Gilman RH, Guerrant RL, Kang G, Lanata CF, Mølbak K, Rasmussen ZA, Sack RB, Valentiner-Branth P, Checkley W, Childhood Malnutrition and Infection Network. Diarrhea in early childhood: short-term association with weight and long-term association with length. Am J Epidemiol. 2013;178(7):1129–38.CrossRefGoogle Scholar
  144. Richard SA, Black RE, Gilman RH, Guerrant RL, Kang G, Lanata CF, Mølbak K, Rasmussen ZA, Sack RB, Valentiner-Branth P, Checkley W, Childhood Malnutrition and Infection Network. Catch-up growth occurs after diarrhea in early childhood. J Nutr. 2014;144(6):965–71.CrossRefGoogle Scholar
  145. Riddle MS, Murray JA, Porter CK. The incidence and risk of celiac disease in a healthy US adult population. Am J Gastroenterol. 2012;107(8):1248–55.CrossRefGoogle Scholar
  146. Riddle MS, Murray JA, Cash BD, Pimentel M, Porter CK. Pathogen-specific risk of celiac disease following bacterial causes of foodborne illness: a retrospective cohort study. Dig Dis Sci. 2013;58(11):3242–5.CrossRefGoogle Scholar
  147. Roberts T, Kowalcyk B, Buck P, Blaser MJ, Frenkel JK, Lorber B, Smith J, Tarr PI. The long-term health outcomes of selected foodborne pathogens. The Center for Foodborne Illness Research & Prevention, November 12, 2009. www.foodborneillness.org.
  148. Ruigómez A, Garcia Rodríguez L, Panes J. Risk of irritable bowel syndrome after an episode of bacterial gastroenteritis in general practice: influence of comorbidities. Clin Gastroenterol Hepatol. 2007;5(4):465–9.CrossRefGoogle Scholar
  149. Scallan E, Majowicz SE, Hall G, Banerjee A, Bowman CL, Daly L, Jones T, Kirk MD, Fitzgerald M, Angulo FJ. Prevalence of diarrhoea in the community in Australia, Canada, Ireland, and the United States. Int J Epidemiol. 2005;34(2):454–60.  https://doi.org/10.1093/ije/dyh413.CrossRefGoogle Scholar
  150. Scallan E, Jones TF, Cronquist A, Thomas S, Frenzen P, Hoefer D, Medus C, Angulo FJ, FoodNet Working Group. Factors associated with seeking medical care and submitting a stool sample in estimating the burden of foodborne illness. Foodborne Pathog Dis. 2006;3(4):432–8.  https://doi.org/10.1089/fpd.2006.3.432. CrossRefGoogle Scholar
  151. Scallan E, Hoekstra RM, Angulo FJ, Tauxe RV, Widdowson MA, Roy SL, Jones JL, Griffin PM. Foodborne illness acquired in the United States—major pathogens. Emerg Infect Dis. 2011a;17(1):7–15.  https://doi.org/10.3201/eid1701.091101p1.CrossRefGoogle Scholar
  152. Scallan E, Griffin PM, Angulo FJ, Tauxe RV, Hoekstra RM. Foodborne illness acquired in the United States—unspecified agents. Emerg Infect Dis. 2011b;17(1):16–22.CrossRefGoogle Scholar
  153. Scharff R. Economic burden from health losses due to foodborne illness in the United States. J Food Prot. 2012;75(1):123–31.CrossRefGoogle Scholar
  154. Schlech WF 3rd. Foodborne listeriosis. Clin Infect Dis. 2000;31:770–5.CrossRefGoogle Scholar
  155. Shuaib FM, Jolly PE, Ehiri JE, Yatich N, Jiang Y, Funkhouser E, Person SD, Wilson C, Ellis WO, Wang JS, Williams JH. Association between birth outcomes and aflatoxin B1 biomarker blood levels in pregnant women in Kumasi, Ghana. Trop Med Int Health. 2010;15(2):160–7.CrossRefGoogle Scholar
  156. Siegler RL. The hemolytic uremic syndrome. Pediatr Clin North Am. 1995;42:1505–29.CrossRefGoogle Scholar
  157. Siegler R, Oakes R. Hemolytic uremic syndrome; pathogenesis, treatment, and outcome. Curr Opin Pediatr. 2005;17:200–4.CrossRefGoogle Scholar
  158. Siegler RL, Pavia AT, Christofferson RD, Milligan MK. A 20-year population-based study of postdiarrheal hemolytic uremic syndrome in Utah. Pediatrics. 1994;94(1):35–40.Google Scholar
  159. Smit GSA, Padalko E, Van Acker J, Hens N, Dorny P, Speybroeck N, Devleesschauwer B. Public health impact of congenital toxoplasmosis and cytomegalovirus infection in Belgium, 2013: a systematic review and data synthesis. Clin Infect Dis. 2017;65:661–8.CrossRefGoogle Scholar
  160. Smith JL, Bayles D. Postinfectious irritable bowel syndrome: a long-term consequence of bacterial gastroenteritis. J Food Prot. 2007;70:1762–9.CrossRefGoogle Scholar
  161. Smith LE, Stoltzfus RJ, Prendergast A. Food chain mycotoxin exposure, gut health and impaired growth: a conceptual framework. Adv Nutr. 2012;3:526–31.CrossRefGoogle Scholar
  162. Suri RS, Clark WF, Barrowman N, Mahon JL, Thiessen-Philbrook HR, Rosas-Arellano MP, Zarnke K, Garland JS, Garg AX. Diabetes during diarrhea-associated hemolytic uremic syndrome: a systematic review and meta-analysis. Diabetes Care. 2005;28:2556–62.CrossRefGoogle Scholar
  163. Sutterland AL, Fond G, Kuin A, Koeter MW, Lutter R, van Gool T, Yolken R, Szoke A, Leboyer M, de Haan L. Beyond the association. Toxoplasma gondii in schizophrenia, bipolar disorder, and addiction: systematic review and meta-analysis. Acta Psychiatr Scand. 2015;132:161–79.CrossRefGoogle Scholar
  164. Swaminathan B, Gerner-Smidt P. The epidemiology of human listeriosis. Microbes Infect. 2007;9:1236–43.CrossRefGoogle Scholar
  165. Tam CC, Rodrigues LC, Petersen I, Islam A, Hayward A, O’Brien SJ. Incidence of Guillain-Barré syndrome among patients with Campylobacter infection: a general practice research database study. J Infect Dis. 2006;194(1):95–7.CrossRefGoogle Scholar
  166. Tam CC, O’Brien SJ, Petersen I, Islam A, Hayward A, Rodrigues LC. Guillain-Barré syndrome and preceding infection with Campylobacter, influenza and Epstein Barr virus in the general practice research database. PLoS One. 2007;2(4):e344.CrossRefGoogle Scholar
  167. Tam CC, Rodrigues LC, Viviani L, Dodds JP, Evans MR, Hunter PR, Gray JJ, Letley LH, Rait G, Tompkins DS, O’Brien SJ, IIDS Study Executive Committee. Longitudinal study of infectious intestinal disease in the UK (IID2 study): incidence in the community and presenting to general practice. Gut. 2012;61:69–77.CrossRefGoogle Scholar
  168. Ternhag A, Torner A, Svensson A, Ekdahl K, Giesecke J. Short- and long-term effects of bacterial gastrointestinal infections. Emerg Infect Dis. 2008;14:143–8.CrossRefGoogle Scholar
  169. Teunis PF, Havelaar AH. The Beta Poisson dose-response model is not a single-hit model. Risk Anal. 2000;20:513–20.CrossRefGoogle Scholar
  170. Teunis PFM, Chappell CL, Okhuysen PC. Cryptosporidium dose response studies: variation between isolates. Risk Anal. 2002;22(1):175–83.CrossRefGoogle Scholar
  171. Teunis PFM, Koningstein M, Takumi K, Van Der Giessen JW. Human beings are highly susceptible to low doses of Trichinella spp. Epidemiol Infect. 2012;140(2):210–8.CrossRefGoogle Scholar
  172. Thabane M, Kottachchi DT, Marshall JK. Systematic review and meta-analysis: the incidence and prognosis of post-infectious irritable bowel syndrome. Aliment Pharmacol Ther. 2007;26:535–44.CrossRefGoogle Scholar
  173. The MAL-ED Network Investigators. The MAL-ED study: a multinational and multidisciplinary approach to understand the relationship between enteric pathogens, malnutrition, gut physiology, physical growth, cognitive development, and immune responses in infants and children up to 2 years of age in resource-poor environments. Clin Infect Dis. 2014;59(Suppl 4):S193–206.CrossRefGoogle Scholar
  174. Torrey EF, Yolken RH. Toxoplasma gondii and schizophrenia. Emerg Infect Dis. 2003;9:1375–80.CrossRefGoogle Scholar
  175. Toval F, Schiller R, Meisen I, Putze J, Kouzel IU, Zhang W, Karch H, Bielaszewska M, Mormann M, Müthing J, Dobrindt U. Characterization of urinary tract infection-associated Shiga toxin-producing Escherichia coli. Infect Immun. 2014;82:4631–42.CrossRefGoogle Scholar
  176. Turner PC. The molecular epidemiology of chronic aflatoxin driven impaired child growth. Scientifica (Cario). 2013;  https://doi.org/10.1155/2013/152879.CrossRefGoogle Scholar
  177. Turner PC, Collinson AC, Cheung YB, Gong Y, Hall AJ, Prentice AM, Wild CP. Aflatoxin exposure in utero causes growth faltering in Gambian infants. Int J Epidemiol. 2007;36:1119–25.CrossRefGoogle Scholar
  178. UNICEF, WHO, World Bank Group. Joint child malnutrition estimates 2017 edition. http://www.who.int/nutgrowthdb/jme_brochoure2017.pdf?ua=1. Accessed 20 Sept 2017.
  179. Vally H, Glass K, Ford L, Hall G, Kirk MD, Shadbolt C, Veitch M, Fullerton KE, Musto J, Becker N. Proportion of illness acquired by foodborne transmission for nine enteric pathogens in Australia: an expert elicitation. Foodborne Pathog Dis. 2014;11(9):727–33.  https://doi.org/10.1089/fpd.2014.1746. Epub 2014 Jul 29CrossRefGoogle Scholar
  180. Vincent C, Boerlin P, Daignault D, Dozois CM, Dutil L, Galanakis C, Reid-Smith RJ, Tellier PP, Tellis PA, Ziebell K, Manges AR. Food reservoir for Escherichia coli causing urinary tract infections. Emerg Infect Dis. 2010;16:88–95.CrossRefGoogle Scholar
  181. Walker SP, Wachs TD, Grantham-McGregor S, Black MM, Nelson CA, Huffman SL, Baker-Henningham H, Chang SM, Hamadani JD, Lozoff B, Gardner JM, Powell CA, Rahman A, Richter L. Inequality in early childhood: risk and protective factors for early child development. Lancet. 2011;378(9799):1325–38.CrossRefGoogle Scholar
  182. Werber D, Fruth A, Buchholz U, Prager R, Kramer MH, Ammon A, Tschape H. Strong association between Shiga toxin-producing Escherichia coli O157 and virulence genes stx2 and eae as possible explanation for predominance of serogroup O157 in patients with haemolytic uraemic syndrome. Eur J Clin Microbiol Infect Dis. 2003;22(12):726–30.CrossRefGoogle Scholar
  183. Wheeler JG, Sethi D, Cowden JM, Wall PG, Rodrigues LC, Tompkins DS, Hudson MJ, Roderick PJ. Study of infectious intestinal disease in England: rates in the community, presenting to general practice, and reported to national surveillance. The infectious intestinal disease study executive. BMJ. 1999;318(7190):1046–50.CrossRefGoogle Scholar
  184. Wild CP, Gong YY. Mycotoxins and human disease: a largely ignored global health issue. Carcinogenesis. 2010;31(1):71–82.CrossRefGoogle Scholar
  185. Winer JB. Guillain Barré syndrome. Mol Pathol. 2001;54(6):381–5.Google Scholar
  186. Wong CS, Mooney JC, Brandt JR, Staples AO, Jelacic S, Boster DR, Watkins SL, Tarr PI. Risk factors for the hemolytic uremic syndrome in children infected with Escherichia coli O157:H7: a multivariable analysis. Clin Infect Dis. 2012;55:33–41.CrossRefGoogle Scholar
  187. Wu F. 2013. Aflatoxin exposure and chronic human diseases: estimates of burden of disease. In Aflatoxins: finding solutions for improved food safety. Unnevehr, LJ Grace D. 2020 vision focus 20(3). Washington, DC: International Food Policy Research Institute (IFPRI).Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Barbara B. Kowalcyk
    • 1
    • 2
    • 3
  • Sara M. Pires
    • 4
  • Elaine Scallan
    • 5
  • Archana Lamichhane
    • 2
  • Arie H. Havelaar
    • 6
  • Brecht Devleesschauwer
    • 7
  1. 1.Department of Food Science and TechnologyThe Ohio State UniversityColumbusUSA
  2. 2.RTI InternationalResearch Triangle ParkUSA
  3. 3.Center for Foodborne Illness Research and PreventionRaleighUSA
  4. 4.National Food InstituteTechnical University of DenmarkLyngbyDenmark
  5. 5.Colorado School of Public HealthUniversity of ColoradoAuroraUSA
  6. 6.Department of Animal Sciences, Institute for Sustainable Food Systems, Emerging Pathogens InstituteUniversity of FloridaGainesvilleUSA
  7. 7.Department of Public Health and SurveillanceScientific Institute of Public Health (WIV-ISP)BrusselsBelgium

Personalised recommendations