Advertisement

Biosorption and Biodegradation of Polycyclic Aromatic Hydrocarbons (PAHs) by Microalgae

  • Bhawana Pathak
  • Shalini Gupta
  • Reeta Verma
Chapter
Part of the Environmental Chemistry for a Sustainable World book series (ECSW, volume 18)

Abstract

Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous organic pollutants, primarily generated during the process of incomplete combustion, extraction, exploitation and transportation of fossil fuel. PAHs are environmental and human health hazards due to recalcitrance, toxicity, carcinogenic and mutagenic nature. Therefore, a sustainable cleanup approach is required for the removal of PAHs from contaminated sites. Efficiency of biosorption process for the removal of toxic pollutants has been thoroughly studied in the past. This chapter focuses on the application of microalgae green biosorbents for the removal of PAHs. Characteristics, environmental fate of PAHs and algal biochemistry are summarized. Algae cell structural constituents act as specific binding sites for removal of pollutant, and share enzymatic systems similar to bacteria. Major enzymes responsible for biodegradation of PAHs are described. Immobilization and co-culture technique for enhance biosorption are discussed.

Keywords

Biosorption Biodegradation Microalgae PAHs 

References

  1. Adey WH, Kangas PC, Mulbry W (2011) Algal turf scrubbing: cleaning surface waters with solar energy while producing a biofuel. Bioscience 61:434–441.  https://doi.org/10.1525/bio.2011.61.6.5 CrossRefGoogle Scholar
  2. Ahluwalia SS, Goyal D (2007) Microbial and plant derived biomass for removal of heavy metals from wastewater. Bioresour Technol 98:2243–2257.  https://doi.org/10.1016/j.biortech.2005.12.006 CrossRefGoogle Scholar
  3. Akhtar N, Iqbal J, Iqbal M (2004) Removal and recovery of nickel(II) from aqueous solution by loofa sponge immobilized biomass of Chlorella sorokiniana: characterization studies. J Hazard Mater 108:85–94.  https://doi.org/10.1016/j.jhazmat.2004.01.002 CrossRefGoogle Scholar
  4. Aksu Z (2005) Application of biosorption for the removal of organic pollutants: a review. Process Biochem 40:997–1026.  https://doi.org/10.1016/j.procbio.2004.04.008 CrossRefGoogle Scholar
  5. Aksu Z, Akpinar D (2001) Competitive biosorption of phenol and chromium(VI) from binary mixtures onto dried anaerobic activated sludge. Biochem Eng J 7:183–193.  https://doi.org/10.1016/S1369-703X(00)00126-1 CrossRefGoogle Scholar
  6. Al-Homaidan AA, Al-Houri HJ, Al-Hazzani AA, Moubayed MS (2014) Biosorption of copper ions from aqueous solutions by Spirulina Platensis biomass. Arab J Chem 7:57–62.  https://doi.org/10.1016/j.arabjc.2013.05.022 CrossRefGoogle Scholar
  7. Ashkenazy R, Gottlieb L, Yannai S (1997) Characterization of acetone-washed yeast biomass functional groups involved in lead biosorption. Biotechnol Bioeng 55:1–10.  https://doi.org/10.1002/(SICI)1097-0290(19970705)55:1<1::AID-BIT1>3.0.CO;2-H CrossRefGoogle Scholar
  8. Ashour I, Abu Al-Rub FA, Sheikha D, Volesky B (2008) Biosorption of naphthalene from refinery simulated waste-water on blank alginate beads and immobilized dead algal cells. Sep Sci Technol 43:2208–2224.  https://doi.org/10.1080/01496390801887351 CrossRefGoogle Scholar
  9. Babu TS, Akhtar TA, Lampi MA, Tripuranthakam S, Dixon DG, Greenberg BM (2003) Similar stress responses are elicited by copper and ultraviolet radiation in the aquatic plant Lemna gibba: implication of reactive oxygen species as common signals. Plant Cell Physiol 44:1320–1329. PMID: 14701927 CrossRefGoogle Scholar
  10. Beolchini F, Pagnanelli F, Toro L, Veglio F (2006) Ionic strength effect on copper biosorption by Sphaelotilus natans: equilibrium study and dynamic modeling in membrane reactor. Water Res 40:144–152.  https://doi.org/10.1016/j.watres.2005.10.031 CrossRefGoogle Scholar
  11. Berthe-Corti L, Conradi B, Hulsch R, Sinn B, Wiesehan K (1998) Microbial cleaning of waste gas containing volatile organic compounds in a bioreactor system with a closed gas circuit. Acta Biotechnol 18:291–304CrossRefGoogle Scholar
  12. Blanco A, Sanz B, Llama MJ, Serra JL (1999) Biosorption of heavy metals to immobilized Phormidium Laminosum biomass. J Biotechnol 69:227–240CrossRefGoogle Scholar
  13. Bold HC, Wynne MJ (1985) Introduction to the algae. Structure and reproduction, 2nd edn. Prentice Hall, Inc, Englewood Cliffs, 720 ppGoogle Scholar
  14. Borde X, Guieysse B, Delgado O, Munoz R, Hatti-Kaul R, Nugier CC (2003) Synergistic relationships in algal-bacterial microcosms for the treatment of aromatic pollutants. Bioresour Technol 86:293–300.  https://doi.org/10.1016/S0960-8524(02)00074-3 CrossRefGoogle Scholar
  15. Bosman J, Hendricks F (1980) The development of an algal pond system for the removal of nitrogen from an inorganic industrial; effluent. In: Proceedings of international symposium on aquaculture in wastewater NIWP. CSIR, Pretoria, pp 26–35Google Scholar
  16. Canet R, Birnstingl JG, Malcolm DG, Lopez-Real JM, Beck AJ (2001) Biodegradation of polycyclic aromatic hydrocarbons (PAHs) by native microflora and combinations of white-rot fungi in a coal-tar contaminated soil. Bioresour Technol 76(2):113–117.  https://doi.org/10.1016/S0960-8524(00)00093-6 CrossRefGoogle Scholar
  17. Cao B, Nagarajan K, Loh KC (2009) Biodegradation of aromatic compounds: current status and opportunities for biomolecular approaches. Appl Microbiol Biotechnol 85:207–228.  https://doi.org/10.1007/s00253-009-2192-4 CrossRefGoogle Scholar
  18. Cerniglia CE (1992) Biodegradation of polycyclic aromatic hydrocarbons. Biodegradation 3:351–368.  https://doi.org/10.1007/BF00129093 CrossRefGoogle Scholar
  19. Cerniglia CE, Gibson DT, Van Baalen C (1979) Algal oxidation of aromatic hydrocarbons: formation of 1-naphthol from naphthalene by Agmenellum Quadruplicatum, strain PR-6. Biochem Biophys Res Commun 88:50–58.  https://doi.org/10.1016/0006-291X(79)91695-4 CrossRefGoogle Scholar
  20. Cerniglia CE, Baalen CV, Gibson DT (1980a) Metabolism of naphthalene by cyanobacterium Oscillatoria sp. Strain JCM. J Gen Microbiol 116:485–494 0022-1287/80/0000-8717Google Scholar
  21. Cerniglia CE, Gibson DT, Van Baalen C (1980b) Oxidation of naphthalene by cyanobacteria and microalgae. J Gen Microbiol 116:495–500 0022-1287/80/0000-871Google Scholar
  22. Chaillan F, Gugger M, Saliot A, Couté A, Oudot J (2006) Role of cyanobacteria in the biodegradation of crude oil by a tropical cyanobacterial mat. Chemosphere 62:1574–1582.  https://doi.org/10.1016/j.chemosphere.2005.06.050 CrossRefGoogle Scholar
  23. Chan SMN, Luan T, Wong MH, Tam NFY (2006) Removal and biodegradation of polycyclic aromatic hydrocarbons by Selenastrum Capricornutum. Environ Toxicol Chem 25:1772–1779.  https://doi.org/10.1897/05-354R.1 CrossRefGoogle Scholar
  24. Chekroun KB, Sánchez E, Baghour M (2014) The role of algae in bioremediation of organic pollutants. Int Res J Pub Environl Health 1(2):19–32 ISSN 2360-8803. http://www.journalissues.org/irjpeh/
  25. Cheng KY, Wong JWC (2006) Effect of synthetic surfactants on the solubilization and distribution of PAHs in water/soil-water systems. Environ Technol Vol 27(8):835–844.  https://doi.org/10.1080/09593332708618695 CrossRefGoogle Scholar
  26. Chung MK, Tsui MTK, Cheung KC, Tam NFY, Wong MH (2007) Removal of aqueous phenanthrene by brown seaweed Sargassum hemiphyllum: sorption-kinetic and equilibrium studies. Sep Purif Technol 54:355–362.  https://doi.org/10.1016/j.seppur.2006.10.008 CrossRefGoogle Scholar
  27. Codd GA (1987) Immobilized micro-algae and cyanobacteria. Br Phycol Soc Newslett 24:1–5Google Scholar
  28. Davis E, Gloyna E (1969) Anionic and nonionic surfactant sorption and degradation by algae cultures. J Am Oil Chem Soc 46:604–608.  https://doi.org/10.1007/BF02544977 CrossRefGoogle Scholar
  29. Davis TA, Bohumil V, Alfonso M (2003) A review of the biochemistry of heavy metal biosorption by brown algae. Water Res 37:4311–4330.  https://doi.org/10.1016/S0043-1354(03)00293-8 CrossRefGoogle Scholar
  30. Dean-Ross D, Moody J, Cerniglia CE (2002) Utilization of mixtures of polycyclic aromatic hydrocarbons by bacteria isolated from contaminated sediment. FEMS Microbiol Ecol 41:17.  https://doi.org/10.1111/j.1574-6941.2002.tb00960.x CrossRefGoogle Scholar
  31. Djerdjev AM, Beattie JK (2008) Electroacoustic and ultrasonic attenuation measurements of droplet size and f-potential of alkane-in-water emulsions: effects of oil solubility and composition. Phys Chem 10:4843–4852.  https://doi.org/10.1039/b807623e CrossRefGoogle Scholar
  32. Ellis BE (1977) Degradation of phenolic compounds by freshwater algae. Plant Sci Lett 8:213–216.  https://doi.org/10.1016/0304-4211(77)90183-3 CrossRefGoogle Scholar
  33. El-Sheekh MM, Ghareib MM, Abou-El-Souod GW (2012) Biodegradation of phenolic and polycyclic aromatic compounds by some algae and cyanobacteria. J Bioremed Biodegr 3:133.  https://doi.org/10.4172/2155-6199.1000133 CrossRefGoogle Scholar
  34. Ernst R, Gonzales CJ, Arditti V (1983) Biological effects of surfactants: Part 6 – Effects of anionic, non-ionic and amphoteric surfactants on a green alga (Chlamydomonas). Environ Pollut (Ser A) 31:159–175CrossRefGoogle Scholar
  35. Fomina M, Gadd GM (2014) Biosorption: current perspectives on concept, definition and application. Bioresour Technol 160:3–14.  https://doi.org/10.1016/j.biortech.2013.12.102 CrossRefGoogle Scholar
  36. Fukami K, Nishijima T, Ishida Y (1997) Stimulative and inhibitory effects of bacteria on the growth of microalgae. Hydrobiologia 358:185–199.  https://doi.org/10.1023/A:1003139402315 CrossRefGoogle Scholar
  37. Garbayo I, Leon R, Vigara J, Vilchez C (2002) Inhibition of nitrate consumption by nitrite in entrapped Chlamyodomonas Reinhardtii cells. Bioresour Technol 81:207–215.  https://doi.org/10.1016/S0960-8524(01)00138-9 CrossRefGoogle Scholar
  38. Garcia de Llasera MP, Olmos-Espejel Jde J, Diaz-Flores G, MontanoMontiel A (2016) Biodegradation of benzo(a)pyrene by two freshwater microalgae Selenastrum Capricornutum and Scenedesmus Acutus: a comparative study useful for bioremediation. Environ Sci Pollut Res Int 23:3365–3375.  https://doi.org/10.1007/s11356-015-5576-2 CrossRefGoogle Scholar
  39. Garrido Moreno I (2008) Microalgae immobilization: current techniques and uses. Bioresour Technol 99:3949–3964.  https://doi.org/10.1016/j.biortech.2007.05.040 CrossRefGoogle Scholar
  40. Gattullo EC, Hanno B, Steinberg Christian EW, Elisabetta L (2012) Removal of bisphenol A by the freshwater green alga Monoraphidium braunii and the role of natural organic matter. Sci Total Environ 416:501–506.  https://doi.org/10.1016/j.scitotenv.2011.11.033 CrossRefGoogle Scholar
  41. Ghasemi Y, Sara R-A, Elham F (2011) The biotransformation, biodegradation, and bioremediation of organic compounds by microalgae. J Phycol 47:969–980.  https://doi.org/10.1111/j.1529-8817.2011.01051.x CrossRefGoogle Scholar
  42. Ghosal D, Ghosh S, Dutta TK, Ahn Y (2016) Current state of knowledge in microbial degradation of polycyclic aromatic hydrocarbons (PAHs): a review. Front Microbiol 7:1369.  https://doi.org/10.3389/fmicb.2016.01369 CrossRefGoogle Scholar
  43. Gods’gift OE, Fagade OE (2016) Microalgal-bacterial consortium in polyaromatic hydrocarbon degradation of petroleum – based effluent. J Bioremed Biodegr 7:359.  https://doi.org/10.4172/2155-6199.1000359 CrossRefGoogle Scholar
  44. Guieysse B, Borde X, Muñoz R, Hatti-Kaul R, Nugier-Chauvin C, Patin H, Mattiasson B (2002) Influence of the initial composition of algal-bacterial microcosms on the degradation of salicylate in a fed-batch culture. Biotechnol Lett 24:531–538.  https://doi.org/10.1023/A:1014847616212 CrossRefGoogle Scholar
  45. Hammaini A, Gonzalez F, Ballester A, Blazquez ML, Munoz JA (2003) Simultaneous uptake of metals by activated sludge. Miner Eng 16:723–729.  https://doi.org/10.1016/S0892-6875(03)00166-3 CrossRefGoogle Scholar
  46. Haritash AK, Kaushik CP (2009) Biodegradation aspects of polycyclic aromatic hydrocarbons (PAHs): a review. J Hazard Mater 169:1–15.  https://doi.org/10.1016/j.jhazmat.2009.03.137 CrossRefGoogle Scholar
  47. Hatzinger PB, Alexander M (1995) Effect of aging of chemicals in soil on their biodegradability and extractability. Environ Sci Technol 29:537–545.  https://doi.org/10.1021/es00002a033 CrossRefGoogle Scholar
  48. Heitkamp MA, Cerniglia CE (1989) Polycyclic aromatic hydrocarbon degradation by a Mycobacterium sp. in microcosms containing sediment and water from a pristine ecosystem. Appl Environ Microbiol 55:1968–1973 0099-2240/89/081968-06Google Scholar
  49. Herwijnen R, van de Sande BF, van der Wielen FWM, Govers HAJ, Parsons JR (2003) Infuence of phenanthrene and fluoranthene on the degradation of fluorene and glucose by Sphingomonas sp. strain LB126 in chemostat cultures. FEMS Microbiol Ecol 46:105–111CrossRefGoogle Scholar
  50. Hong YW, Yuan DX, Lin QM, Yang TL (2008) Accumulation and biodegradation of phenanthrene and fluoranthene by the algae enriched from a mangrove aquatic ecosystem. Mar Pollut Bull 56:1400–1405.  https://doi.org/10.1016/j.marpolbul.2008.05.003 CrossRefGoogle Scholar
  51. Imran A, Asim M, Khan Tabrez A (2012) Low cost adsorbents for the removal of organic pollutants from wastewater. J Environ Manag 113:170–183.  https://doi.org/10.1016/j.jenvman.2012.08.028
  52. Ivánová D, Kaduková J, Kavuličová J, Horváthová H (2012) Determination of the functional groups in algae Parachlorella Kessleri by potentiometric titrations. Nova Biotechnologica Et Chimica 11:93–99.  https://doi.org/10.2478/v10296-012-0010-3 CrossRefGoogle Scholar
  53. Jones KC, Stratford JA, Tidridge P, Waterhouse KS, Johnston AE (1989) Polynuclear aromatic hydrocarbons in an agricultural soil: long-term changes in profile distribution. Environ Pollut 56:337–351CrossRefGoogle Scholar
  54. Kaoutar Ben Chekroun, Esteban Sánchez, Mourad Baghour (2014) The role of algae in bioremediation of organic pollutants, International Research Journal of Public and Environmental Health Vol.1 (2), pp. 19–32, ISSN 2360–8803, http://www.journalissues.org/irjpeh/
  55. Kaya VM, Picard G (1996) Stability of chitosan gel as entrapment matrix of viable Scenedesmus bicellularis cells immobilized on screens for tertiary treatment of wastewater. Bioresour Technol 56:147–155.  https://doi.org/10.1016/0960-8524(96)00013-2 CrossRefGoogle Scholar
  56. Ke L, Luo L, Wang P, Luan T, Tam NF (2010) Effects of metals on biosorption and biodegradation of mixed polycyclic aromatic hydrocarbons by a freshwater green alga Selenastrum Capricornutum. Bioresour Technol 101:6961–6972.  https://doi.org/10.1016/j.biortech.2010.04.011 CrossRefGoogle Scholar
  57. Keskinkan O, Goksu MZ, Basibuyuk M, Forster CF (2004) Heavy metal adsorption characteristics of a submerged aquatic plant (Ceratophyllum demersum). Bioresour Technol 92(2):197–200.  https://doi.org/10.1016/j.biortech.2003.07.011
  58. Kim IS, Park JS, Kim KW (2001) Enhanced biodegradation of polycyclic aromatic hydrocarbons using nonionic surfactants in soil slurry. Appl Geochem 16:1419–1428CrossRefGoogle Scholar
  59. Kirso U, Irha N (1998) Role of algae in fate of carcinogenic polycyclic aromaitc hydrocarbons in the aquatic environment. Ecotoxicol Environ Saf 41:83–89.  https://doi.org/10.1006/eesa.1998.1671 CrossRefGoogle Scholar
  60. Koelmans A, Anzion SF, Lijklema L (1995) Dynamics of organic micropollutant biosorption to cyanobacteria and detritus. Environ Sci Technol 29:933–940 0013-936x/95/0929-0933$09.00/0CrossRefGoogle Scholar
  61. Lau PS, Tam NFY, Wong YS (1997) Wastewater nutrients (N and P) removal by carrageenan and alginate immobilized Chlorella vulgaris. Environ Technol 18:945–951.  https://doi.org/10.1080/09593331808616614 CrossRefGoogle Scholar
  62. Lee RE (1989) Phycology. Cambridge University Press, Cambridge, 561 pp. ISBN-13 978-0-511-38669-5. www.cambridge.org/9780521864084 Google Scholar
  63. Lei AP, Wong YS, Tam NFY (2002) Removal of pyrene by different microalgal species. Water Sci Technol 46:195–201CrossRefGoogle Scholar
  64. Lei AP, Wong YS, Tam NFY (2003) Pyrene-induced changes of glutathione-S-transferase (GST) activities in different microalgal species. Chemosphere 50(3):293–301.  https://doi.org/10.1016/S0045-6535(02)00499-X CrossRefGoogle Scholar
  65. Lei AP, Hu ZL, Wong YS, Tam NFY (2007) Removal of fluoranthene and pyrene by different microalgal species. Bioresour Technol 98:273–280.  https://doi.org/10.1016/j.biortech.2006.01.012 CrossRefGoogle Scholar
  66. Lewis MA (1990) Chronic toxicities of surfactants and detergent builders to algae: a review and risk assessment. Ecotoxicol Environ Saf 20:123–140 0 147-65 13/90CrossRefGoogle Scholar
  67. Li Y, Fei X, Deng X (2012) Novel molecular insights into nitrogen starvation-induced triacylglycerols accumulation revealed by differential gene expression analysis in green algae Micractinium Pusillum. Biomass Bioenergy 42:199–211.  https://doi.org/10.1016/j.biombioe.2012.03.010 CrossRefGoogle Scholar
  68. Lu AYH, Miwa GT (1980) Molecular properties and biological functions of microsomal epoxide hydrase. Annu Rev Pharmacol Toxicol 20:513–531.  https://doi.org/10.1146/annurev.pa.20.040180.002501 CrossRefGoogle Scholar
  69. Lukavsky J (1988) Long-term preservation of algal strains by immobilization. Arch Protistenkd 135:65–68.  https://doi.org/10.1016/S0003-9365(88)80054-X CrossRefGoogle Scholar
  70. Luo L, Wang P, Lin L, Luan T, Ke L, Tam NFY (2014a) Removal and transformation of high molecular weight polycyclic aromatic hydrocarbons in water by live and dead microalgae. Process Biochem 49:1723–1732.  https://doi.org/10.1016/j.procbio.2014.06.026 CrossRefGoogle Scholar
  71. Luo S, Chen B, Lin L, Wang X, Tam NF, Luan T (2014b) Pyrene degradation accelerated by constructed consortium of bacterium and microalga: effects of degradation products on the microalgal growth. Environ Sci Technol 48:13917–13924.  https://doi.org/10.1021/es503761j CrossRefGoogle Scholar
  72. Macek T, Mackova M (2011) Potential of biosorption technology. Microbial biosorption of metal. Springer, Dordrecht, ISBN: 978-94-007-0442-8.  https://doi.org/10.1007/978-94-007-0443-5-2 CrossRefGoogle Scholar
  73. Mallick N (2002) Biotechnological potential of immobilized algae for wastewater N, P and metal removal: a review. BioMetals 15:377–390.  https://doi.org/10.1023/A:1020238520948 CrossRefGoogle Scholar
  74. Michalak I, Chojnacka K, Witek-Krowiak A (2013) State of the art for the biosorption process – a review. Appl Biochem Biotech 170:1389–1416.  https://doi.org/10.1007/s12010-013-0269-0 CrossRefGoogle Scholar
  75. Mielke HW, Wang G, Gonzales CR, Powell ET, Le B, Quach VN (2004) PAHs and metals in the soils of inner-city and suburban New Orleans, Louisiana, USA. Environ Toxicol Pharmacol 18:243–247CrossRefGoogle Scholar
  76. Millemann RE, Birge WJ, Black JA, Cushman RM, Daniels KL, Franco PJ, Giddings JM, McCarthy JF, Stewart AJ (1984) Comparative acute toxicity to aquatic organisms of components of coal-derived synthetic fuels. Trans Am Fish Soc 113:74–85.  https://doi.org/10.1577/1548-8659(1984)113<74:CATTAO>2.0.CO;2 CrossRefGoogle Scholar
  77. Mishra PK, Mukherji S (2012) Biosorption of diesel and lubricating oil on algal biomass. 3 Biotech 2:301–310.  https://doi.org/10.1007/s13205-012-0056-6 CrossRefGoogle Scholar
  78. Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 7:405–410.  https://doi.org/10.1016/S1360-1385(02)02312-9 CrossRefGoogle Scholar
  79. Moscoso F, Deive FJ, Longo MA, Sanromán MA (2012) Technoeconomic assessment of phenanthrene degradation by Pseudomonas stutzeri CECT 930 in a batch bioreactor. Bioresour Technol 104:81–89.  https://doi.org/10.1016/j.biortech.2011.10.053 CrossRefGoogle Scholar
  80. Mulligan CN, Yong RN, Gibbs BF (2001) Surfactant-enhanced remediation of contaminated soil: a review. Eng Geol 60:371–380CrossRefGoogle Scholar
  81. Muñoz R, Guieysse B (2006) Algal–bacterial processes for the treatment of hazardous contaminants: a review. Water Res 40:2799–2815.  https://doi.org/10.1016/j.watres.2006.06.011 CrossRefGoogle Scholar
  82. Muñoz R, Guieysse B, Mattiasson B (2003) Phenanthrene biodegradation by an algal–bacterial consortium in two-phase partitioning bioreactors. Appl Microbiol Biotechnol 61:261–267.  https://doi.org/10.1007/s00253-003-1231-9 CrossRefGoogle Scholar
  83. Narro ML, Cerniglia CE, Van Baalen C, Gibson DT (1992a) Evidence for an NIH shift in oxidation of naphthalene by the marine cyanobacterium Oscillatoria sp. strain JCM. Appl Environ Microbiol 58:1360–1363. PMC195598Google Scholar
  84. Narro ML, Cerniglia CE, Van Baalen C, Gibson DT (1992b) Metabolism of phenanthrene by the marine cyanobacterium Agmenellum quadruplicatum PR-6. Appl Environ Microbiol 58:1351–1359. PMC195597Google Scholar
  85. Nassiri Y, Ginsburger-Vogel T, Mansot JL, Wry J (1996) Effects of heavy metals on Tetraselmis suecica: ultrastructural and energy-dispersive X-ray spectroscopic studies. Biol Cell 86:151–160.  https://doi.org/10.1016/0248-4900(96)84779-4 CrossRefGoogle Scholar
  86. Norton L, Baskaran K, McKenzie T (2004) Biosorption of zinc from aqueous solutions using biosolids. Adv Environ Res 8:629–635.  https://doi.org/10.1016/S1093-0191(03)00035-2 CrossRefGoogle Scholar
  87. Oswald W, Gotaas H, Ludwig H, Lynch V (1953) Algae symbiosis in oxidation ponds: III. Photosynthetic oxygenation. Sew Ind Waste 25:692–705 www.jstor.org/stable/25032197 Google Scholar
  88. Oungbho K, Muller BW (1997) Chitosan sponges as sustained release drug carriers. Int J Pharm 156:229–237.  https://doi.org/10.1016/S0378-5173(97)00201-9 CrossRefGoogle Scholar
  89. Ozer A, Akkaya G, Turabik M (2006) Biosorption of Acid Blue 290 (AB 290) and Acid Blue 324 (AB 324) dyes on Spirogyra rhizopus. J Hazard Mater B135:355–364.  https://doi.org/10.1016/j.jhazmat.2005.11.080 CrossRefGoogle Scholar
  90. Pagnanelli F, Toro L, Veglio F (2002) Olive mill solid residues as heavy metal sorbent material: a preliminary study. Waste Manag 22:901–907.  https://doi.org/10.1016/S0956-053X(02)00086-7 CrossRefGoogle Scholar
  91. Park D, Yun Y-S, Park JM (2010) The past, present, and future trends of biosorption. Biotechnol Bioprocess Eng 15:86–102.  https://doi.org/10.1007/s12257-009-0199-4 CrossRefGoogle Scholar
  92. Pascale H, Schiavon M, Morel J-L, Lichtfouse E (1997) Polycyclic aromatic hydrocarbon (PAH) occurrence and remediation methods. Analusis EDP Sci 25:M56–M59 hal-00193277Google Scholar
  93. Patel JG, Nirmal Kumar JI, Kumar RN, Khan SR (2016) Biodegradation capability and enzymatic variation of potentially hazardous polycyclic aromatic hydrocarbons—anthracene and pyrene by Anabaena fertilissima. Polycycl Aromat Compd 36:72–87.  https://doi.org/10.1080/10406638.2015.1039656 CrossRefGoogle Scholar
  94. Percival EGV, McDowell RH (1968) Chemistry and enzymology of marine algal polysaccharides. Academic, London.  https://doi.org/10.1002/ange.19680802022 CrossRefGoogle Scholar
  95. Pérez-Gregorio M, García-Falcón M, Martínez-Carballo E, Simal-Gándara J (2010) Removal of polycyclic aromatic hydrocarbons from organic solvents by ashes wastes. J Hazard Mater 178:273–281.  https://doi.org/10.1016/j.jhazmat.2010.01.073 CrossRefGoogle Scholar
  96. Phang SM, Chu WL, Rabiei R (2015) Phycoremediation. In: Sahoo D, Seckbach J (eds) The algae world. Cellular origin, life in extreme habitats and astrobiology, vol 26. Springer, Dordrecht.  https://doi.org/10.1007/978-94-017-7321-8_13 CrossRefGoogle Scholar
  97. Pinto G, Pollio A, Previtera L, Temussi F (2002) Biodegradation of phenols by microalgae. Biotechnol Lett 24:2047–2051.  https://doi.org/10.1023/A:1021367304315 CrossRefGoogle Scholar
  98. Pinto G, Pollio A, Previtera L (2003) Removal of low molecular weight phenols from olive oil mill wastewater using microalgae. Biotechnol Lett 25:1657.  https://doi.org/10.1023/A:1025667429222 CrossRefGoogle Scholar
  99. Puranik P, Modak J, Paknikar K (2005) A comparative study of the mass transfer kinetics of metal biosorption by microbial biomass. Hydrometallurgy 52:189–197.  https://doi.org/10.1016/S0304-386X(99)00017-1 CrossRefGoogle Scholar
  100. Radwan SS, Al-Hasan RH, Salamah S, Al-Dabbous S (2002) Bioremediation of oily sea water by bacteria immobilized in biofilms coating macroalgae. Int Biodeter Biodegr 50:55–59.  https://doi.org/10.1016/S0964-8305(02)00067-7 CrossRefGoogle Scholar
  101. Robinson PK, Mak AL, Trevan MD (1986) Immobilized algae: a review. Process Biochem 21:122–126Google Scholar
  102. Robinson PK, Reeve JO, Goulding KH (1988) Kinetics of phosphorus uptake by immobilized Chlorella. Biotechnol Lett 10:17–20.  https://doi.org/10.1007/BF01030017 CrossRefGoogle Scholar
  103. Romera E, González F, Ballester A, Blázquez ML, Muñoz JA (2007) Comparative study of biosorption of heavy metals using different types of algae. Bioresour Technol 98:3344–3353.  https://doi.org/10.1016/j.biortech.2006.09.026 CrossRefGoogle Scholar
  104. Safonova E, Kvitko K, Kuschk P, Moder M, Reisser W (2005) Biodegradation of phenanthrne by the green alga Scendesmus obliquus Es-55. Eng Life Sci 5:234–239.  https://doi.org/10.1002/elsc.200520077 CrossRefGoogle Scholar
  105. Sanches S, Martins M, Silva AF, Galinha CF, Santos MA, Pereira IAC, Crespo MTB (2017) Bioremoval of priority polycyclic aromatic hydrocarbons by a microbial community with high sorption ability. Environ Sci Pollut Res 24:3550–3561.  https://doi.org/10.1007/s11356-016-8014-1 CrossRefGoogle Scholar
  106. Sato R, Omura T (1978) Cytochrome P-450. Academic, New York, pp 16–18Google Scholar
  107. Schoeny R, Cody T, Warshawsky D, Radike M (1988) Metabolism of mutagenic polycyclic aromatic hydrocarbons by photosynthetic algal species. Mutat Res 197:289–302.  https://doi.org/10.1016/0027-5107(88)90099-1 CrossRefGoogle Scholar
  108. Semple KT, Cain RB (1996) Biodegradation of phenols by the alga Ochromonas danica. Appl Environ Microb 62:1265–1273. PMC167892Google Scholar
  109. Semple KT, Cain RB, Schmidt S (1999) Biodegradation of aromatic compounds by microalgae. FEMS Microbiol Lett 170:291–300.  https://doi.org/10.1111/j.1574-6968.1999.tb13386.x CrossRefGoogle Scholar
  110. Shashirekha S, Uma L, Subramanian G (1997) Phenol degradation by the marine cyanobacterium Phormidium valderianum BDU-30501. J Ind Microbiol Biotechnol 19:130–133.  https://doi.org/10.1038/sj.jim.2900438 CrossRefGoogle Scholar
  111. Stringfellow WTM, Cohen LA (1999) Evaluating the relationship between the sorption of PAHs to bacterial biomass and biodegradation. Wat Res 33:2535–2544.  https://doi.org/10.1016/S0043-1354(98)00497-7 CrossRefGoogle Scholar
  112. Subashchandrabose SR, Logeshwaran P, Venkateswarlu K, Naidu R, Megharaj M (2017) Pyrene degradation by Chlorella sp. MM3 in liquid medium and soil slurry: possible role of dihydrolipoamide acetyltransferase in pyrene biodegradation. Algal Res 23:223–232.  https://doi.org/10.1016/j.algal.2017.02.010 CrossRefGoogle Scholar
  113. Sukačová K, Červený J (2017) Can algal biotechnology bring effective solution for closing the phosphorus cycle? Use of algae for nutrient removal. Eur J Environ Sci 7:63–72.  https://doi.org/10.14712/23361964.2017.6 CrossRefGoogle Scholar
  114. Suzuki T, Yamaguchi T, Ishida M (1998) Immobilization of Prototheca zopfii in calcium alginate beads for the degradation of hydrocarbons. Process Biochem 33:541–546.  https://doi.org/10.1016/S0032-9592(98)00022-3 CrossRefGoogle Scholar
  115. Takáčová A, Smolinská M, Ryba J, Mackul’ak T, Jokrllová J, Hronec P (2014) Biodegradation of Benzo[a]Pyrene through the use of algae. Cent Eur J Chem 12:1133–1143.  https://doi.org/10.2478/s11532-014-0567-6 CrossRefGoogle Scholar
  116. Tam NFY, Wong YS (2000) Effect of immobilized microalgal bead concentrations on wastewater nutrient removal. Environ Pollut 107:145–151.  https://doi.org/10.1016/S0269-7491(99)00118-9 CrossRefGoogle Scholar
  117. Tang JX, Hoagland KD, Siegeried BD (1998) Uptake and bioconcentration of atrazine by selected freshwater algae. Environ Toxicol Chem 17:1085–1090 https://digitalcommons.unl.edu/entomologyfacpub/134 CrossRefGoogle Scholar
  118. Tang L, Tang XY, Zhu YG, Zheng MH, Miao QL (2005) Contamination of polycyclic aromatic hydrocarbons (PAHs) in urban soils in Beijing, China. Environ Int 31:822–828.  https://doi.org/10.1016/j.envint.2005.05.031 CrossRefGoogle Scholar
  119. Torres MA, Barros MP, Campos SCG, Pinto E, Rajamani S, Sayre RT, Colepicolo P (2008) Biochemical biomarkers in algae and marine pollution: a review. Ecotoxicol Environ Saf 71:1–15.  https://doi.org/10.1016/j.ecoenv.2008.05.009 CrossRefGoogle Scholar
  120. Tsezos M (1999) Process Metallurgy 9:171–173CrossRefGoogle Scholar
  121. Tsezos M, Hatzikioseyian A, Remoudaki E (2012) Biofilm reactors in mining and metallurgical effluent treatment: biosorption, bioprecipitation, bioreduction processes. http://www.metal.ntua.gr/uploads
  122. Ueno R, Ureno N, Wada S (2006) Synergistic effect of cell immobilization in polyurethane foam and use of thermo tolerant strain on mixed hydrocarbon substrate by Prototheca zopfii. Fish Sci 72:1027–1033.  https://doi.org/10.1111/j.1444-2906.2006.01252.x CrossRefGoogle Scholar
  123. Ueno R, Wada S, Urano N (2008) Repeated batch cultivation of the hydrocarbon-degrading, micro-algal strain Prototheca zopfii RND16 immobilized in polyurethane foam. Can J Microbiol 54:66–70.  https://doi.org/10.1139/w07-112 CrossRefGoogle Scholar
  124. Urrutia I, Serra JL, Llama MJ (1995) Nitrate removal from water by Scenedesmus obliquus immobilizes in polymeric foams. Enzym Microb Technol 17:200–205.  https://doi.org/10.1016/0141-0229(94)00008-F CrossRefGoogle Scholar
  125. Valeta J, Verdegem M (2015) Removal of nitrogen by algal turf scrubber technology in recirculating aquaculture systém. Aquac Res 46:945–951CrossRefGoogle Scholar
  126. Vannela R, Verma SK (2006) Co2+, Cu2+, and Zn2+ accumulation by cyanobacterium Spirulina platensis. Biotechnol Prog 22:1282–1293.  https://doi.org/10.1021/bp060075s CrossRefGoogle Scholar
  127. Wang L, Zheng B (2008) Toxic effects of fluoranthene and copper on marine diatom Phaeodactylum tricornutum. J Environ Sci 20:1363–1372.  https://doi.org/10.1016/S1001-0742(08)62234-2 CrossRefGoogle Scholar
  128. Warshawsky D, Radike M, Jayasimhulu K, Cody T (1988) Metabolism of benzo(a)pyrene by a dioxygenase enzyme system of the freshwater green alga Selenastrum capricornutum. Biochem Biophys Res Commun 152:540–544.  https://doi.org/10.1016/S0006-291X(88)80071-8 CrossRefGoogle Scholar
  129. Warshawsky D, Cody T, Radike M, Reilman R, Schumann B, LaDow K, Schneider J (1995) Biotransformation of benzo[a]pyrene and other polycyclic aromatic hydrocarbons and heterocyclic analogs by several green algae and other algal species under gold and white light. Chem Biol Interact 97:131–148.  https://doi.org/10.1016/0009-2797(95)03610-X CrossRefGoogle Scholar
  130. Wurster M, Mundt S, Hammer E (2003) Extracellular degradation of phenol by the cyanobacterium Synechococcus PCC 7002. J Appl Phycol 15:171.  https://doi.org/10.1023/A:1023840503605 CrossRefGoogle Scholar
  131. Yamaguchi T, Ishida M, Suzuki T (1999) An immobilized cell system in polyurethane foam for the lipophilic micro-alga Prototheca zopfii. Process Biochem 34:167–171.  https://doi.org/10.1016/S0032-9592(98)00084-3 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Bhawana Pathak
    • 1
  • Shalini Gupta
    • 1
  • Reeta Verma
    • 1
  1. 1.School of Environment and Sustainable DevelopmentCentral University of GujaratGandhinagarIndia

Personalised recommendations