Environmental Assessment of a Solar Tower Using the Life Cycle Assessment (LCA)

  • Fausto CavallaroEmail author
  • Domenico Marino
  • Dalia Streimikiene
Conference paper
Part of the Smart Innovation, Systems and Technologies book series (SIST, volume 101)


That renewable energy technologies, particularly in the production phase, are currently those that generate a lower environmental impact compared to traditional fossil fuel systems is now well-established. Despite this, many studies fail to include an evaluation of the impacts generated by systems designed and built for energy production over their entire life cycle. The aim of this paper is to provide, with the aid of LCA, a preliminary environmental assessment of a solar power tower.


Concentrated solar thermal Life Cycle Assessment (LCA) Sustainability assessment 


  1. 1.
    Weinrebe, G., Böhnke, M., Trieb, F.: Life cycle assessment of an 80 MW SEGS plant and a 30 MW PHOEBUS power tower. In: Proceedings ASME International Solar Energy Conference Solar Engineering, Albuquerque, USA, pp. 417–424 (1998)Google Scholar
  2. 2.
    Burkhardt III, J.J., Heath, G., Turchi, C.: Life cycle assessment of a model parabolic trough concentrating solar power plant with thermal energy storage. In: Proceedings ASME 4th International Conference on Energy Sustainability, Phoenix, Arizona, USA, pp 599–608 (2010)Google Scholar
  3. 3.
    Piemonte, V., Falco, M.D., Tarquini, P., Giaconia, A.: Life Cycle Assessment of a high temperature molten salt concentrated solar power plant. Sol. Energy 85(5), 1101–1108 (2011)CrossRefGoogle Scholar
  4. 4.
    Kuenlin, A., Augsburger, G., Gerber, L., Maréchal, F.; Life cycle assessment and environomic optimization of concentrating solar thermal power plants. In: Proceedings of the 26th International Conference on Efficiency, Cost, Optimization, Simulation and Environmental Impact of Energy Systems, ECOS 2013, Guilin, China (2013)Google Scholar
  5. 5.
    Whitaker, M.B., Heath, G.A., Burkhardt, J.J., Turchi, C.S.: Life cycle assessment of a power tower concentrating solar plant and the impacts of key design alternatives. Environ. Sci. Technol. 47(11), 5896–5903 (2013)CrossRefGoogle Scholar
  6. 6.
    Klein, S.J.W., Rubin, E.S.: Life cycle assessment of greenhouse gas emissions, water and land use for concentrated solar power plants with different energy backup systems. Energy Policy 63, 935–950 (2013)CrossRefGoogle Scholar
  7. 7.
    Corona, B., San Miguel, G., Cerrajero, E.: Life cycle assessment of concentrated solar power (CSP) and the influence of hybridising with natural gas. Int. J. Life Cycle Assess. 19(6), 1264–1275 (2014)CrossRefGoogle Scholar
  8. 8.
    San Miguel, G., Corona, B.: Hybridizing concentrated solar power (CSP) with biogas and biomethane as an alternative to natural gas: Analysis of environmental performance using LCA. Renew. Energy 66, 580–587 (2014)CrossRefGoogle Scholar
  9. 9.
    Asdrubali, F., Baldinelli, G., Scrucca, F.: Comparative life cycle assessment of an innovative CSP air-cooled system and conventional condensers. Int. J. Life Cycle Assess. 20(8), 1076–1088 (2015)CrossRefGoogle Scholar
  10. 10.
    Corona, B., Ruiz, D., San Miguel, G.: Environmental assessment of a HYSOL CSP plant compared to a conventional tower CSP plant. Procedia Comput. Sci. 83, 1110–1117 (2016)CrossRefGoogle Scholar
  11. 11.
    Lalau, Y., Py, X., Meffre, A., Olives, R.: Comparative LCA between current and alternative waste-based TES for CSP. Waste Biomass Valoriz. 7, 1509–1519 (2016)CrossRefGoogle Scholar
  12. 12.
    Ehtiwesh, I.A.S., Coelho, M.C., Sousa, A.C.M.: Exergetic and environmental life cycle assessment analysis of concentrated solar power plants. Renew. Sustain. Energy Rev. 56, 145–155 (2016)CrossRefGoogle Scholar
  13. 13.
    Telsnig, T., Weinrebe, G., Finkbeiner, J., Eltrop, L.: Life cycle assessment of a future central receiver solar power plant and autonomous operated heliostat concepts. Sol. Energy 157, 187–200 (2017)CrossRefGoogle Scholar
  14. 14.
    Lamnatou, C., Chemisana, D.: Concentrating solar systems: Life Cycle Assessment (LCA) and environmental issues. Renew. Sustain. Energy Rev. 78, 916–932 (2017)CrossRefGoogle Scholar
  15. 15.
    Batuecas, E., Mayo, C., Díaz, R., Pérez, F.J.: Life Cycle Assessment of heat transfer fluids in parabolic trough concentrating solar power technology. Sol. Energy Mater. Sol. Cells 171, 91–97 (2017)CrossRefGoogle Scholar
  16. 16.
    Cavallaro F., Ciraolo L.: A life cycle assessment (LCA) of a paraboloidal-dish solar thermal power generation system. In: Proceedings 1st International Symposium on Environment Identities and Mediterranean Area, ISEIM, Corte-Ajaccio, France, pp. 260–265 (2006)Google Scholar
  17. 17.
    Concentrated solar thermal power - Now! - ESTIA SolarPaces, Settembre 2005Google Scholar
  18. 18.
    Cavallaro, F.: La tecnologia solare a concentrazione: tra innovazione e mercato (in italian). Energia 4, 48–55 (2014)Google Scholar
  19. 19.
    Pitz-Paal, R., Dersch, J., Milow, B.: ECOSTAR: European Concentrated Solar Thermal Road-Mapping; Roadmap Document (WP 3 Deliverable No. 7) (2005)Google Scholar
  20. 20.
    Ávila-Marín, A.L.: Volumetric receivers in solar thermal power plants with central receiver system technology: a review. Sol. Energy 85(5), 891–910 (2011)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  1. 1.University of MoliseCampobassoItaly
  2. 2.Mediterranea University of Reggio CalabriaReggio CalabriaItaly
  3. 3.Lithuanian Institute of Agricultural EconomicsVilniusLithuania

Personalised recommendations