Advertisement

A Design Workbench for Interactive Music Systems

  • Joseph MallochEmail author
  • Jérémie Garcia
  • Marcelo M. Wanderley
  • Wendy E. Mackay
  • Michel Beaudouin-Lafon
  • Stéphane Huot
Chapter
Part of the Springer Series on Cultural Computing book series (SSCC)

Abstract

This chapter discusses possible links between the fields of computer music and human-computer interaction (HCI), particularly in the context of the MIDWAY project between Inria, France and McGill University, Canada. The goal of MIDWAY is to construct a “musical interaction design workbench” to facilitate the exploration and development of new interactive technologies for musical creation and performance by bringing together useful models, tools, and recent developments from computer music and HCI. Such models and tools can expand the means available for musical expression, as well as provide HCI researchers with a better foundation for the design of tools for a class of “extreme” users who are accustomed to devoting decades of practice towards the development of expertise with their instruments. We conclude with a discussion of design guidelines for Interactive Music Systems.

References

  1. Appert C, Huot S, Dragicevic P, Beaudouin-Lafon M (2009) FlowStates : prototypage d’applications interactives avec des flots de données et des machines à états. In: Proceedings of ACM/IHM 2009, pp 119–128Google Scholar
  2. Barbosa J, Wanderley MM, Huot S (2017) Exploring playfulness in NIME design: the case of live looping tools. In: Proceedings of the 2017 international conference on new interfaces for musical expression, Copenhagen, Denmark, pp 87–92Google Scholar
  3. Beaudouin-Lafon M (2000) Instrumental interaction: an interaction model for designing post-WIMP user interfaces. In: Proceedings ACM CHI, pp 446–453Google Scholar
  4. Beaudouin-Lafon M, Mackay WE (2000) Reification, polymorphism and reuse: three principles for designing visual interfaces. In: Proceedings of ACM/AVI, pp 102–109Google Scholar
  5. Berthaut F, Dahl L (2015) BOEUF: a unified framework for modeling and designing digital orchestras. In: International symposium on computer music multidisciplinary research. Springer, pp 153–166Google Scholar
  6. Cook P (2001) Principles for designing computer music controllers. In: ACM-CHI NIME workshop, Seattle, USA. Reprinted and expanded with author’s and expert’s comments in Jensenius AR, Lyons MJ (eds) A NIME reader: fifteen years of new interfaces for musical expression. Springer, 2017, pp 1–13Google Scholar
  7. Cook P (2009) Re-designing principles for computer music controllers: a case study of SqueezeVox Maggie. In: Proceedings of the international conference on new interfaces for musical expression, Pittsburgh, USA, pp 218–221Google Scholar
  8. Dragicevic P, Fekete JD (2001) Input device selection and interaction configuration with ICON. In: Blandford A, Vanderdonckt J, Gray P (eds) Proceedings of IHM-HCI 2001. People and computers XV—interaction without frontiers. Lille, France. Springer, pp 543–448Google Scholar
  9. Eaglestone B, Ford N (2001) Composition systems requirements for creativity: what research methodology? In: Proceedings of the MOSART workshop, pp 7–16Google Scholar
  10. Fiebrink R, Trueman D, Britt C, Nagai M, Kaczmarek K, Early M, Daniel MR, Hege A, Cook P (2010) Toward understanding human-computer interaction in composing the instrument. In: Proceedings of the international computer music conference, New York, USAGoogle Scholar
  11. Garcia J, Tsandilas T, Agon C, Mackay WE (2012) Interactive paper substrates to support musical creation. In: Proceedings of ACM/CHI, pp 1825–1828Google Scholar
  12. Garcia J, Leroux P, Bresson J (2014a) pOM: Linking pen gestures to computer-aided composition processes. In: Proceedings of the 40th international computer music conference joint with the 11th sound & music computing conferenceGoogle Scholar
  13. Garcia J, Tsandilas T, Agon C, Mackay WE (2014b) PaperComposer: creating interactive paper interfaces for music composition. In: Proceedings of ACM/IHM, Lille, France, pp 1–8Google Scholar
  14. Garcia J, Tsandilas T, Agon C, Mackay WE (2014c) Structured observation with polyphony: a multifaceted tool for studying music composition. In: Proceedings of the 2014 conference on designing interactive systems, pp 199–208Google Scholar
  15. Hödl O, Kayali F, Fitzpatrick G, Holland S (2016) LiveMAP design cards for technology-mediated audience participation in live music. In: Mudd T, Holland S, Wilkie K (eds) Proceedings of the music and HCI workshop, CHI 2016, San Jose, USAGoogle Scholar
  16. Hunt A, Kirk R (2000) Mapping strategies for musical performance. In: Wanderley MM, Battier M (eds) Trends in gestural control of music. Ircam Centre Pompidou, France, pp 231–258Google Scholar
  17. Hunt A, Wanderley MM (2002) Mapping performer parameters to synthesis engines. Organ Sound 7(2):97–108CrossRefGoogle Scholar
  18. Huot S (2013) ‘Designeering interaction’: a missing link in the evolution of human-computer interaction. Habilitation à Diriger des Recherches, Université Paris-Sud XI, FranceGoogle Scholar
  19. Jacob RJK, Sibert LE, McFarlane DC, Mullen MP (1994) Integrality and separability of input devices. ACM Trans Comput-Hum Interact 1(1):3–26CrossRefGoogle Scholar
  20. Leman M (2008) Embodied music cognition and mediation technology. MIT PressGoogle Scholar
  21. Mackay WE (2000) Responding to cognitive overload: co-adaptation between users and technology. Intellectica 30(1):177–193Google Scholar
  22. Malloch J, Birnbaum D, Sinyor E, Wanderley MM (2006) Towards a new conceptual framework for digital musical instruments. In: Proceedings of the international conference on digital audio effects, Montreal, Canada, pp 49–52Google Scholar
  23. Malloch J, Sinclair S, Wanderley MM (2014) Distributed tools for interactive design of heterogeneous signal networks. Multimed Tools Appl 74(15):5683–5707CrossRefGoogle Scholar
  24. Malloch J, Wanderley MM (2007) The T-Stick: from musical interface to musical instrument. In: Proceedings of the international conference on new interfaces for musical expression, New York, USA, pp 66–69Google Scholar
  25. Malloch J, Wanderley MM (2017) Embodied cognition and digital musical instruments: design and performance. In: Lesaffre M, Maes PJ, Leman M (eds) The Routledge companion to embodied music interaction, p 440–449CrossRefGoogle Scholar
  26. Marier M (2010) The sponge: a flexible interface. In: Proceedings of the international conference on new interfaces for musical expression, Sydney, Australia, pp 356–359Google Scholar
  27. Marier M (2017) Musique pour éponges: La composition pour un nouvel instrument de musique numérique. D.Mus. thesis, Université de Montréal, CanadaGoogle Scholar
  28. Marshall MT, Wanderley MM (2006) Evaluation of sensors as input devices for computer music interfaces. In: Kronland-Martinet R, Voinier T, Ystad S (eds) CMMR 2005—proceedings of computer music modeling and retrieval 2005 conference. Lecture notes in computer science, vol 3902. Springer, Berlin, Heidelberg, pp 130–139Google Scholar
  29. Marshall MT, Hartshorn M, Wanderley MM, Levitin DJ (2009) Sensor choice for parameter modulations in digital musical instruments: empirical evidence from pitch modulation. J New Music Res 38(3):241–253CrossRefGoogle Scholar
  30. Martinet A, Casiez G, Grisoni L (2012) Integrality and separability of multi-touch interaction techniques in 3D manipulation tasks. IEEE Trans Visual Comput Graphics 18(3):369–380CrossRefGoogle Scholar
  31. Medeiros CB, Wanderley MM (2014) A comprehensive review of sensors and instrumentation methods used in musical expression. Sens J 14(8):13556–13591CrossRefGoogle Scholar
  32. Miranda ER, Wanderley MM (2006) New digital musical instruments: control and interaction beyond the keyboard. A-R Editions, Madison, USAGoogle Scholar
  33. Pennycook BW (1985) Computer-music interfaces: a survey. ACM Comput Surv 17(2):267–289CrossRefGoogle Scholar
  34. Rasmussen J (1986) Information processing and human-machine interaction: an approach to cognitive engineering. Elsevier, New York, USAGoogle Scholar
  35. Shneiderman B (2009) Creativity support tools: a grand challenge for HCI researchers. Engineering the user interface. Springer, London, pp 1–9Google Scholar
  36. Vertegaal R, Ungvary T, Kieslinger M (1996) Towards a musician’s cockpit: transducers, feedback and musical function. In: Proceedings of the international computer music conference, Hong Kong, China, pp 308–311Google Scholar
  37. Wanderley MM, Mackay W (2019) HCI, music and art: an interview with Wendy Mackay. In Holland S, Mudd T, Wilkie-McKenna K, McPherson A, Wanderley M (eds) New directions in music and human-computer interaction. Springer, London. ISBN 978-3-319-92069-6Google Scholar
  38. Wanderley MM, Orio N (2002) Evaluation of input devices for musical expression: borrowing tools from HCI. Comput Music J 26(3):62–76CrossRefGoogle Scholar
  39. Wanderley MM, Viollet JP, Isart F, Rodet X (2000) On the choice of transducer technologies for specific musical functions. In: Proceedings of the international computer music conference, Berlin, Germany, pp 244–247Google Scholar
  40. Wang J, Malloch J, Huot S, Chevalier F, Wanderley MM (2017) Versioning and annotation support for collaborative mapping design. In: Proceedings of the sound and music computing conference, Espoo, FinlandGoogle Scholar
  41. Wessel D, Wright M (2002) Problems and prospects for intimate musical control of computers. Comput Music J 26(3):11–22CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Joseph Malloch
    • 1
    Email author
  • Jérémie Garcia
    • 2
  • Marcelo M. Wanderley
    • 3
    • 4
  • Wendy E. Mackay
    • 5
  • Michel Beaudouin-Lafon
    • 6
  • Stéphane Huot
    • 7
  1. 1.Dalhousie UniversityHalifaxCanada
  2. 2.ENAC - Université de ToulouseToulouseFrance
  3. 3.Centre for Interdisciplinary Research in Music Media and TechnologyMcGill UniversityMontrealCanada
  4. 4.Inria Lille – Nord EuropeVilleneuve d’AscqFrance
  5. 5.Inria; LRI, Université Paris-Sud, CNRS; Université Paris-SaclayOrsayFrance
  6. 6.LRI, Université Paris-Sud, CNRS; Inria; Université Paris-SaclayOrsayFrance
  7. 7.Inria Lille – Nord EuropeVilleneuve d’AscqFrance

Personalised recommendations