Substation Signal Matching with a Bagged Token Classifier

  • Qin Wang
  • Sandro SchönbornEmail author
  • Yvonne-Anne Pignolet
  • Theo Widmer
  • Carsten Franke
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10868)


Currently, engineers at substation service providers match customer data with the corresponding internally used signal names manually. This paper proposes a machine learning method to automate this process based on substation signal mapping data from a repository of executed projects. To this end, a bagged token classifier is proposed, letting words (tokens) in the customer signal name vote for provider signal names. In our evaluation, the proposed method exhibits better performance in terms of both accuracy and efficiency over standard classifiers.


  1. 1.
    Hotho, A., Nürnberger, A., Paaß, G.: A brief survey of text mining. In: Ldv Forum, vol. 20 (2005)Google Scholar
  2. 2.
    Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011)MathSciNetzbMATHGoogle Scholar
  3. 3.
    Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., et al.: Tensorflow: large-scale machine learning on heterogeneous distributed systems. arXiv preprint arXiv:1603.04467 (2016)
  4. 4.
    Liaw, A., Wiener, M., et al.: Classification and regression by randomforest. R News 2(3), 18–22 (2002)Google Scholar
  5. 5.
    Joachims, T.: Text categorization with support vector machines: Learning with many relevant features. In: Machine learning: ECML-98 (1998)Google Scholar
  6. 6.
    Bottou, L.: Large-scale machine learning with stochastic gradient descent. In: Lechevallier, Y., Saporta, G. (eds.) Proceedings of COMPSTAT 2010. Springer, Heidelberg (2010).
  7. 7.
    Manning, C.D., Raghavan, P., Schütze, H., et al.: Introduction to Information Retrieval. Cambridge University Press, Cambridge (2008)CrossRefGoogle Scholar
  8. 8.
    Tang, D., Qin, B., Liu, T.: Document modeling with gated recurrent neural network for sentiment classification. In: Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP) (2015)Google Scholar
  9. 9.
    Pennington, J., Socher, R., Manning, C.: Glove: global vectors for word representation. In: Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP) (2014)Google Scholar
  10. 10.
    Graves, A., Schmidhuber, J.: Framewise phoneme classification with bidirectional LSTM and other neural network architectures. Neural Netw. 18(5), 602–610 (2005)CrossRefGoogle Scholar
  11. 11.
    Kingma, D., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Qin Wang
    • 1
  • Sandro Schönborn
    • 2
    Email author
  • Yvonne-Anne Pignolet
    • 2
  • Theo Widmer
    • 3
  • Carsten Franke
    • 2
  1. 1.ETH ZürichZürichSwitzerland
  2. 2.ABB Corporate ResearchBadenSwitzerland
  3. 3.ABB Power Grid - Grid AutomationBadenSwitzerland

Personalised recommendations