Effectiveness of Human Autonomy Teaming in Cockpit Applications

  • Thomas Z. StrybelEmail author
  • Jillian Keeler
  • Vanui Barakezyan
  • Armando Alvarez
  • Natassia Mattoon
  • Kim-Phuong L. Vu
  • Vernol Battiste
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10905)


Single pilot and/or remotely piloted operations are becoming feasible in the national airspace system because of advances in autonomous systems, and the development of Human-Autonomy Teams (HAT). We compared a recommender tool for cockpit applications installed with HAT tools or No HAT tools, using simulations of off-nominal events varying in severity. Pilots on average spent more time with the tool when the HAT features were present, but there was considerable variability between pilots in tool usage. However, greater time spent using the tool was associated with lower subjective workload (NASA TLX).


Human-Autonomy Teaming Workload Situation awareness 



This research was supported by the NASA cooperative agreement #NNA14AB39C “Single Pilot Understanding through Distributed Simulation (SPUDS),” R. J. Shively, Technical Monitor.


  1. 1.
    Fadden, D.M., Morton, P.M., Taylor, R.W., Lindberg, T.: First-Hand Evolution of the 2-Person Crew Jet Transport Flight Deck (2015).
  2. 2.
    Norman, R.A.: Economic Opportunities and Technological Challenges for Reduced Crew Operations. The Boeing Company (2007)Google Scholar
  3. 3.
    Shively, R.J., Lachter, J., Brandt, S.L., Matessa, M., Battiste, V., Johnson, W.W.: Why human-autonomy teaming? In: Baldwin, C. (ed.) AHFE 2017. AISC, vol. 586, pp. 3–11. Springer, Cham (2018). Scholar
  4. 4.
    Battiste, V., Lachter, J., Brandt, S., Alvarez, A., Strybel, T.Z.: Human automation teaming: lessons learned and future directions. In: Yamamoto, S., Mori, H. (eds.) HIMI 2018. LNCS, vol. 10905, pp. 479–493. Springer, Cham (2018)Google Scholar
  5. 5.
    Matessa, M., Vu, K.-P.L., Strybel, T.Z., Battiste, V., Schnell, T., Cover, M.: Using distributed simulation to investigate human-autonomy teaming. In: Yamamoto, S., Mori, H. (eds.) HIMI 2018. LNCS, vol. 10905, pp. 541–550 (2018)Google Scholar
  6. 6.
    Lachter, J., Brandt, S.L., Sadler, G., Shively, R.J.: Beyond point design: general pattern to specific implementations. In: Baldwin, C. (ed.) AHFE 2017. AISC, vol. 586, pp. 34–45. Springer, Cham (2018). Scholar
  7. 7.
    Parasuraman, R., Sheridan, T.B., Wickens, C.D.: Humans: still vital after all these years of automation. Hum. Factors 50, 511–520 (2008). Golden Anniversary Special IssueCrossRefGoogle Scholar
  8. 8.
    Cummings, M.L., Stimpson, A., Clamann, M.: Functional requirements for onboard intelligent automation in single pilot operations. In: AIAA 2016, p. 1652 (2016)Google Scholar
  9. 9.
    Chen, J.Y.C., Barnes, M.J.: Human-agent teaming for multi-robot control: a literature review (ARL-TR-6328). Aberdeen Proving Grounds, MD: Human Research and Engineering Directorate (2013)Google Scholar
  10. 10.
    Endsley, M.R.: From here to autonomy: Lessons learned from human–automation research. Hum. Factors 59, 5–27 (2016)CrossRefGoogle Scholar
  11. 11.
    Brandt, S.L., Lachter, J., Russell, R., Shively, R.J.: A human-autonomy teaming approach for a flight-following task. In: Baldwin, C. (ed.) AHFE 2017. AISC, vol. 586, pp. 12–22. Springer, Cham (2018). Scholar
  12. 12.
    Strybel, T.Z., et al.: Measuring the effectiveness of human autonomy teaming. In: Baldwin, C. (ed.) AHFE 2017. AISC, vol. 586, pp. 23–33. Springer, Cham (2018). Scholar
  13. 13.
    Cover, M., Reichlen, C., Matessa, M., Schnell, T.: Analysis of airline pilots subjective feedback to human autonomy teaming in a reduced crew environment. In: Yamamoto, S., Mori, H. (eds.) HIMI 2018. LNCS, vol. 10905, pp. 359–368 (2018)Google Scholar
  14. 14.
    Battiste, V., Bortolussi, M.: Transport pilot workload: a comparison of two subjective techniques. In: Proceedings of the Human Factors and Ergonomics Society Annual Meeting, vol. 32, no. 2, pp. 150–154. SAGE Publications (1988)CrossRefGoogle Scholar
  15. 15.
    Taylor, R.M.: Situational awareness rating technique (SART): the development of a tool for aircrew systems design. In: Situational Awareness in Aerospace Operations (AGARD-CP-478), pp. 3/1–3/17. NATO-AGARD, Neuilly Sur Seine (1990)Google Scholar
  16. 16.
    Jian, J., Bisantz, A., Drury, C.: Foundations for an empirically determined scale of trust in automated systems. Int. J. Cogn. Ergon. 4, 53–71 (2000)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Thomas Z. Strybel
    • 1
    Email author
  • Jillian Keeler
    • 1
  • Vanui Barakezyan
    • 1
  • Armando Alvarez
    • 1
  • Natassia Mattoon
    • 1
  • Kim-Phuong L. Vu
    • 1
  • Vernol Battiste
    • 2
  1. 1.Department of PsychologyCalifornia State University Long BeachLong BeachUSA
  2. 2.San Jose State University FoundationMoffett FieldUSA

Personalised recommendations