Towards Big Data Analytics in Large-Scale Federations of Semantically Heterogeneous IoT Platforms

  • Ilias KalamarasEmail author
  • Nikolaos Kaklanis
  • Kostantinos Votis
  • Dimitrios Tzovaras
Conference paper
Part of the IFIP Advances in Information and Communication Technology book series (IFIPAICT, volume 520)


The technological advances in the Internet-of-Things (IoT) have led to the generation of large amounts of data and the production of a large number of IoT platforms for their management. The abundance of raw data necessitates the use of data analytics in order to extract useful patterns for decision making. Current architectures for big data analytics in the IoT domain address the large volume and velocity of the produced data. However, they do not address the semantic heterogeneity in the data models used by diverse IoT platforms, which emerges when large-scale deployments, spanning across multiple deployment sites, are considered. This paper proposes an architecture for big data analytics in the context of large-scale IoT systems consisting of multiple IoT platforms. A Semantic Interoperability Layer (SIL) handles the interoperability among the data models of the individual platforms, using semantic mappings between them and a unified ontology. Data queries to the SIL and result collection is handled by a cloud-based data management layer, namely the Data Lake, along with storage of metadata needed by data analytics methods. Based on this infrastructure, web-based data analytics and visual analytics methods are used to analyze the collected data, while being agnostic of platform-specific details. The proposed architecture is developed in the context of healthcare provision for older people, although it can be applied to any IoT domain.


Internet-of-Things Big data analytics Semantic interoperability Healthy ageing 



This work is supported by the EU funded projects ACTIVAGE (H2020-IOT-2016, grant agreement no. 732679) and FrailSafe (H2020-PHC-2015-single-stage, grant agreement no. 690140).


  1. 1.
    European project ACTIVAGE.
  2. 2.
    European project FrailSafe.
  3. 3.
    Marjani, M., Nasaruddin, F., Gani, A., Karim, A., Hashem, I.A.T., Siddiqa, A., Yaqoob, I.: Big IOT data analytics: architecture, opportunities, and open research challenges. IEEE Access 5, 5247–5261 (2017)CrossRefGoogle Scholar
  4. 4.
    Soualhi, A., Medjaher, K., Zerhouni, N.: Bearing health monitoring based on Hilbert-Huang transform, support vector machine, and regression. IEEE Trans. Instrum. Measur. 64(1), 52–62 (2015)CrossRefGoogle Scholar
  5. 5.
    Chen, J., Li, K., Tang, Z., Bilal, K., Yu, S., Weng, C., Li, K.: A parallel random forest algorithm for big data in a spark cloud computing environment. IEEE Trans. Parallel Distrib. Syst. 28(4), 919–933 (2017)CrossRefGoogle Scholar
  6. 6.
    Papadopoulos, S., Drosou, A., Dimitriou, N., Abdelrahman, O.H., Gorbil, G., Tzovaras, D.: A BRPCA based approach for anomaly detection in mobile networks. In: Abdelrahman, O.H., Gelenbe, E., Gorbil, G., Lent, R. (eds.) Information Sciences and Systems 2015. LNEE, vol. 363, pp. 115–125. Springer, Cham (2016). Scholar
  7. 7.
    Ding, X., He, L., Carin, L.: Bayesian robust principal component analysis. IEEE Trans. Image Process. 20(12), 3419–3430 (2011)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Rokach, L., Maimon, O.: Clustering methods. In: Maimon, O., Rokach, L. (eds.) Data Mining and Knowledge Discovery Handbook, pp. 321–352. Springer, Boston (2005). Scholar
  9. 9.
    Wold, S., Esbensen, K., Geladi, P.: Principal component analysis. Chemometr. Intell. Lab. Syst. 2(1–3), 37–52 (1987)CrossRefGoogle Scholar
  10. 10.
    Cox, T.F., Cox, M.A.: Multidimensional Scaling. CRC Press, Boca Raton (2000)zbMATHGoogle Scholar
  11. 11.
    Yan, S., Xu, D., Zhang, B., Zhang, H.-J., Yang, Q., Lin, S.: Graph embedding and extensions: a general framework for dimensionality reduction. IEEE Trans. Pattern Anal. Mach. Intell. 29(1), 40–51 (2007)CrossRefGoogle Scholar
  12. 12.
    Kalpakis, K., Gada, D., Puttagunta, V.: Distance measures for effective clustering of ARIMA time-series. In: Proceedings IEEE International Conference on Data Mining, ICDM 2001, pp. 273–280. IEEE (2001)Google Scholar
  13. 13.
  14. 14.
  15. 15.
    Strohbach, M., Ziekow, H., Gazis, V., Akiva, N.: Towards a big data analytics framework for IoT and smart city applications. In: Xhafa, F., Barolli, L., Barolli, A., Papajorgji, P. (eds.) Modeling and Processing for Next-Generation Big-Data Technologies. MOST, vol. 4, pp. 257–282. Springer, Cham (2015). Scholar
  16. 16.
    Rathore, M.M., Ahmad, A., Paul, A., Rho, S.: Urban planning and building smart cities based on the internet of things using big data analytics. Comput. Netw. 101, 63–80 (2016)CrossRefGoogle Scholar
  17. 17.
    Bajaj, G., Agarwal, R., Singh, P., Georgantas, N., Issarny, V.: A study of existing Ontologies in the IOT-domain. arXiv preprint arXiv:1707.00112 (2017)
  18. 18.
    Compton, M., Barnaghi, P., Bermudez, L., GarcíA-Castro, R., Corcho, O., Cox, S., Graybeal, J., Hauswirth, M., Henson, C., Herzog, A., et al.: The SSN ontology of the W3C semantic sensor network incubator group. Web Seman.: Sci. Serv. Agents World Wide Web 17, 25–32 (2012)CrossRefGoogle Scholar
  19. 19.
    Alaya, M.B., Medjiah, S., Monteil, T., Drira, K.: Toward semantic interoperability in oneM2M architecture. IEEE Commun. Mag. 53(12), 35–41 (2015)CrossRefGoogle Scholar
  20. 20.
  21. 21.
    Open Connectivity Foundation.
  22. 22.
    Soldatos, J., et al.: OpenIoT: open source internet-of-things in the cloud. In: Podnar Žarko, I., Pripužić, K., Serrano, M. (eds.) Interoperability and Open-Source Solutions for the Internet of Things. LNCS, vol. 9001, pp. 13–25. Springer, Cham (2015). Scholar
  23. 23.
  24. 24.
    Bermudez-Edo, M., Elsaleh, T., Barnaghi, P., Taylor, K.: IoT-Lite: a lightweight semantic model for the internet of things. In: 2016 International IEEE Conferences on UIC/ATC/ScalCom/CBDCom/IoP/SmartWorld, pp. 90–97. IEEE (2016)Google Scholar
  25. 25.
  26. 26.
  27. 27.
  28. 28.
  29. 29.
  30. 30.
    Veer, H., Wiles, A.: Achieving technical interoperability-the ETSI approach, European telecommunications standards institute (2008)Google Scholar
  31. 31.
    Daniele, L., den Hartog, F., Roes, J.: Created in close interaction with the industry: the smart appliances REFerence (SAREF) ontology. In: Cuel, R., Young, R. (eds.) FOMI 2015. LNBIP, vol. 225, pp. 100–112. Springer, Cham (2015). Scholar
  32. 32.
    Agarwal, R., Fernandez, D.G., Elsaleh, T., Gyrard, A., Lanza, J., Sanchez, L., Georgantas, N., Issarny, V.: Unified IOT ontology to enable interoperability and federation of testbeds. In: 2016 IEEE 3rd World Forum on Internet of Things (WF-IoT), pp. 70–75. IEEE (2016)Google Scholar
  33. 33.
    Noy, N.F., McGuinness, D.L., et al.: Ontology development 101: a guide to creating your first ontology (2001)Google Scholar
  34. 34.
    European project FIESTA-IoT: Federated Interoperable Semantic IoT Testbeds and Applications.
  35. 35.
    Drosou, A., Kalamaras, I., Papadopoulos, S., Tzovaras, D.: An enhanced graph analytics platform (GAP) providing insight in big network data. J. Innov. Digital Ecosyst. 3(2), 83–97 (2016)CrossRefGoogle Scholar
  36. 36.
    Kalamaras, I., Drosou, A., Tzovaras, D.: Multi-objective optimization for multimodal visualization. IEEE Trans. Multimedia 16(5), 1460–1472 (2014)CrossRefGoogle Scholar

Copyright information

© IFIP International Federation for Information Processing 2018

Authors and Affiliations

  • Ilias Kalamaras
    • 1
    Email author
  • Nikolaos Kaklanis
    • 1
  • Kostantinos Votis
    • 1
  • Dimitrios Tzovaras
    • 1
  1. 1.Information Technologies InstituteCentre for Research and Technology HellasThessalonikiGreece

Personalised recommendations