Advertisement

Providing Mission-Critical Services over 5G Radio Access Network

  • Rubén Solozabal
  • Aitor Sanchoyerto
  • Miren Cava
  • Bego Blanco
  • Hicham Khalife
  • Mathieu Bouet
  • Damien Lavaux
  • Emmanouil Kafetzakis
Conference paper
Part of the IFIP Advances in Information and Communication Technology book series (IFIPAICT, volume 519)

Abstract

5G is called to introduce a major transformation in communication network architectures with its transition to cloud native networks. This transformation will enable new unique service capabilities that will drive the development of innovative applications. But, for 5G being successful in this task, the identification of the vertical sectors’ requirements is of outmost importance in order to map them into the design of the network architecture. This paper proposes a novel Cloud-Enabled Radio Access Network (CE-RAN) architecture to support Public Safety services at the edge of the network. This proposal leverages Network Functions Virtualisation, Software Defined Networking and Mobile Edge Computing principles to provide Mission-Critical services through an isolated network slice. We suggest a CE-RAN architecture with two levels of cloudification to bring the service closer to the end user.

Keywords

Mobile edge computing 5G Cloud-Enabled Radio Access Network CUPS IOPS 

Notes

Acknowledgement

The research leading to these results has been supported by the EU funded H2020 5G-PPP project ESSENCE (Grant Agreement Nº 761592) and the Spanish Government’s MINECO project 5GRANVIR (TEC2016-80090-C2-2-R).

References

  1. 1.
    Chen, S., Zhao, J.: The requirements, challenges, and technologies for 5G of terrestrial mobile telecommunication. IEEE Commun. Mag. 52(5), 36–43 (2014).  https://doi.org/10.1109/MCOM.2014.6815891CrossRefGoogle Scholar
  2. 2.
    Tran, T.X., Hajisami, A., Pandey, P., Pompili, D.: Collaborative mobile edge computing in 5G networks: new paradigms, scenarios, and challenges. IEEE Commun. Mag. 55(4), 54–61 (2017).  https://doi.org/10.1109/MCOM.2017.1600863CrossRefGoogle Scholar
  3. 3.
    Blanco, B., Fajardo, J.O., Giannoulakis, I., Kafetzakis, E., Peng, S., Pérez-Romero, J., Trajkovska, I., Khodashenas, P.S., Goratti, L., Paolino, M., Sfakianakis, E.: Technology pillars in the architecture of future 5G mobile networks: NFV, MEC and SDN. Comput. Stand. Interf. 54 (2017).  https://doi.org/10.1016/j.csi.2016.12.007CrossRefGoogle Scholar
  4. 4.
    Fajardo, J.O., et al.: Introducing mobile edge computing capabilities through distributed 5G cloud enabled small cells. Mob. Netw. Appl. (2016).  https://doi.org/10.1007/s11036-016-0752-2
  5. 5.
    Ku, Y.J., et al.: 5G Radio Access Network Design with the Fog Paradigm: Confluence of Communications and Computing. IEEE Commun. Mag. 55(4), 46–52 (2017).  https://doi.org/10.1109/MCOM.2017.1600893CrossRefGoogle Scholar
  6. 6.
    GPP: Technical specification group services and system aspects; system architecture for the 5G system. 3rd Generation Partnership Project (3GPP), TR 23.501, July 2017Google Scholar
  7. 7.
    GPP: Architecture enhancements for control and user plane separations of EPC nodes. 3rd Generation Partnership Project (3GPP), TR 23.214, July 2017Google Scholar
  8. 8.
    GPP: Isolated E-UTRAN operation for public safety. 3rd Generation Partnership Project (3GPP), TS 22.346, March 2017Google Scholar

Copyright information

© IFIP International Federation for Information Processing 2018

Authors and Affiliations

  • Rubén Solozabal
    • 1
  • Aitor Sanchoyerto
    • 1
  • Miren Cava
    • 1
  • Bego Blanco
    • 1
  • Hicham Khalife
    • 2
  • Mathieu Bouet
    • 2
  • Damien Lavaux
    • 2
  • Emmanouil Kafetzakis
    • 3
  1. 1.University of the Basque Country (UPV/EHU)BilbaoSpain
  2. 2.Thales CommunicationsGennevilliersFrance
  3. 3.Orion InnovationsAthensGreece

Personalised recommendations