Iliou Machine Learning Data Preprocessing Method for Stress Level Prediction

  • Theodoros Iliou
  • Georgia KonstantopoulouEmail author
  • Ioannis Stephanakis
  • Konstantinos Anastasopoulos
  • Dimitrios Lymberopoulos
  • George Anastassopoulos
Conference paper
Part of the IFIP Advances in Information and Communication Technology book series (IFIPAICT, volume 519)


Data pre-processing is an important step in the data mining process. Data preparation and filtering steps can take considerable amount of processing time. Data pre-processing includes cleaning, normalization, transformation, feature extraction and selection. In this paper, Iliou and PCA data preprocessing methods evaluated in a data set of 103 students, aged 18–25, who were experiencing anxiety problems. The performance of Iliou and PCA data preprocessing methods was evaluated using the 10-fold cross validation method assessing seven classification algorithms, IB1, J48, Random Forest, MLP, SMO, JRip and FURIA, respectively. The classification results indicate that Iliou data preprocessing algorithm consistently and substantially outperforms PCA data preprocessing method, achieving 98.6% against 92.2% classification performance, respectively.


Data preprocessing Machine learning Data mining Classification algorithms Stress Anxiety disorder Panic disorder 


  1. 1.
    American Psychiatric Association (APA): Diagnostic and Statistical Manual of Mental Disorders, 3rd edn - revised. American Psychiatric Association, Washington, DC (1987)Google Scholar
  2. 2.
    American Psychiatric Association (APA): Diagnostic and Statistical Manual of Mental Disorders, 4th edn. American Psychiatric Association, Washington, DC (1994)Google Scholar
  3. 3.
    Armstrong, K.A., Khawaja, N.G.: Gender differences in anxiety: an investigation of the symptoms, cognitions, and sensitivity towards anxiety in a nonclinical population. Behav. Cogn. Psychother. 30, 227–231 (2002)CrossRefGoogle Scholar
  4. 4.
    Bandura, A.: Self-efficacy: toward a unifying theory of behavioural change. Psychol. Rev. 84, 191–215 (1977)CrossRefGoogle Scholar
  5. 5.
    Beck, A.T., Emery, G.: Anxiety Disorders and Phobias. Basic Books, New York (1985). (with Greenberg, R.)Google Scholar
  6. 6.
    Beck, A.T., Epstein, N., Brown, G., Steer, R.A.: An inventory for measuring clinical anxiety: psychometric properties. J. Consult. Clin. Psychol. 56(6), 893–897 (1988)CrossRefGoogle Scholar
  7. 7.
    Blackburn, I., Davidson, K.: Cognitive Therapy for Depression and Anxiety. Blackwell Scientific Publications, Oxford (1990)Google Scholar
  8. 8.
    Clark, D.M., Beck, A.T.: Cognitive approaches. In: Last, C.G., Hersen, M. (eds.) Handbook of Anxiety Disorders. Pergamon Press, Oxford (1988)Google Scholar
  9. 9.
    Creamer, M., Foran, J., Bell, R.: The Beck Anxiety Inventory in a nonclinical sample. Behav. Res. Ther. 33(4), 477–485 (1995)CrossRefGoogle Scholar
  10. 10.
    Diagnostic and Statistical Manual of Mental Disorders (DSM -5), 5th edn. American Psychiatric Association (2013)Google Scholar
  11. 11.
    Hoehn-Saric, R., McLeod, D.R.: Panic and generalized anxiety disorders. In: Last, C.G., Hersen, M. (eds.) Handbook of Anxiety Disorders. Pergamon Press, Oxford (1988)Google Scholar
  12. 12.
    Kendall, P.C., Hollon, S.D.: Anxious self-talk: development of the anxious self-statements questionnaire. Cogn. Ther. Res. 13(1), 81–93 (1989)CrossRefGoogle Scholar
  13. 13.
    Kendall, P.C., Howard, B.L., Hays, R.C.: Self-referent speech and psychotherapy: the balance of positive and negative thinking. Cogn. Ther. Res. 13(6), 583–598 (1989)CrossRefGoogle Scholar
  14. 14.
    Kendall, P.C., Ingram, R.: The Future for Cognitive Assessment of Anxiety: Let’s get Specific. Guilford Press, New York (1987)Google Scholar
  15. 15.
    Michelson, L., Ascher, L.M. (eds.): Anxiety and Stress Disorders: Cognitive-Behavioral Assessment and Treatment. The Guildford Press, London (1987)Google Scholar
  16. 16.
    Leyfer, O.T., Ruberg, J.L., Woodruff-Borden, J.: Examination of the utility of the Beck Anxiety Inventory and its factors as a screener for anxiety disorders. J. Anxiety Disord. 20(4), 444–458 (2006)CrossRefGoogle Scholar
  17. 17.
    Raj, S.R.: The Postural Tachycardia Syndrome (POTS): pathophysiology, diagnosis & management. Indian Pacing Electrophysiol. J. 6(2), 84–99 (2006)Google Scholar
  18. 18.
    Pyle, D.: Data Preparation for Data Mining. Morgan Kaufmann Publishers, Los Altos (1999)Google Scholar
  19. 19.
    Balasubramanian, M., Schwartz, E.L.: The Isomap algorithm and topological stability. Science 295(5552), 7 (2002)CrossRefGoogle Scholar
  20. 20.
    Hall, M.A.: Correlation-based feature selection for machine learning. Waikato University, Department of Computer Science (1999)Google Scholar
  21. 21.
    Dunteman, G.H.: Principal Components Analysis. SAGE Publications, Thousand Oaks (1989)CrossRefGoogle Scholar
  22. 22.
    Vafaie, H., Imam, I.F.: Feature selection methods: genetic algorithms vs. greedy-like search. In: Proceedings of International Conference on Fuzzy and Intelligent Control Systems (1994)Google Scholar
  23. 23.
    Iliou, T., Anagnostopoulos, C., Stephanakis, I., Anastassopoulos, G.: A novel data preprocessing method for boosting neural network performance: a case study in osteoporosis prediction. Inf. Sci. 380, 92–100 (2017)CrossRefGoogle Scholar
  24. 24.
    Iliou, T., Anagnostopoulos, C., Nerantzaki, M., Anastassopoulos, G.: A novel machine learning data preprocessing method for enhancing classification algorithms performance. In: Proceedings of the 16th International Conference on EANN, Article 11, 5 p. ACM (2015)Google Scholar
  25. 25.
    Kohavi, R.: A study of cross-validation and bootstrap for accuracy estimation and model selection. In: Proceedings of the Fourteenth International Joint Conference on Artificial Intelligence, vol. 2, no. 12, pp. 1137–1143 (1995)Google Scholar
  26. 26.
    Waikato Environment for Knowledge Analysis, Data Mining Software in Java. Accessed 11 Apr 2017
  27. 27.
    Matthews, B.W.: Comparison of the predicted and observed secondary structure of T4 phage lysozyme. Biochimica et Biophysica Acta (BBA) – Protein Struct. 405(2), 442–451 (1975). Scholar
  28. 28.
    Lehmann, E.L., Casella, G.: Theory of Point Estimation, 2nd edn. Springer, New York (1998). ISBN 0-387-98502-6. MR 1639875Google Scholar
  29. 29.
    Powers, D.M.W.: Evaluation: from precision, recall and F-measure to ROC, informedness, markedness & correlation. J. Mach. Learn. Technol. 2(1), 37–63 (2011)MathSciNetGoogle Scholar
  30. 30.
    Steer, R.A., Kumar, G., Ranieri, W.F.: Use of the Beck Anxiety Inventory with adolescent psychiatric outpatients. Psychological Reports 76, 459–465 (1995). Scholar
  31. 31.
    Smeeton, N.C.: Early history of the Kappa statistic. Biometrics 41, 795 (1985). JSTOR 2531300Google Scholar
  32. 32.
    Galatzer-Levy, I.R., et al.: Quantitative forecasting of PTSD from early trauma responses: a machine learning application. J. Psychiatr. Res. 59, 68–76 (2014)CrossRefGoogle Scholar
  33. 33.
    Purnendu Shekhar Panday: Machine learning and IOT for prediction and detection of stress. In: 2017 17th International Conference on Computational Science and Its Applications (ICCSA) (2017).
  34. 34.
    Maxhuni, A., Hernandez-Leal, P., Sucar, L.E., Osmani, V., Morales, E., Mayora, O.: Stress modelling and prediction in presence of scarce data. In: Ambient Intelligence for Health, pp. 224–336. Springer, Puerto Varas, Chile (2015)Google Scholar

Copyright information

© IFIP International Federation for Information Processing 2018

Authors and Affiliations

  • Theodoros Iliou
    • 1
  • Georgia Konstantopoulou
    • 2
  • Ioannis Stephanakis
    • 3
  • Konstantinos Anastasopoulos
    • 4
  • Dimitrios Lymberopoulos
    • 4
  • George Anastassopoulos
    • 1
  1. 1.Medical Informatics Laboratory, Medical SchoolDemocritus University of ThraceAlexandroupolisGreece
  2. 2.Special Office for Health Consulting ServicesUniversity of PatrasPatrasGreece
  3. 3.Hellenic Telecommunication Organization S.A. (OTE)AthensGreece
  4. 4.Department of Electrical Engineer, Wire Communications LaboratoryUniversity of PatrasPatrasGreece

Personalised recommendations