Mapping Properties of Integral Operators on Polygons

  • Joachim Gwinner
  • Ernst Peter Stephan
Part of the Springer Series in Computational Mathematics book series (SSCM, volume 52)


In this chapter we introduce the analysis of boundary integral operators on a polygon with the tool of the Mellin transformation from the original paper [128]. The interested reader may also look into [241] where the Mellin calculus is used to analyse the mapping properties of the integral operators in countably normed spaces. These results are crucial for deriving exponentially fast convergence of the hp −version of the boundary element method (see Chap.  8). The results of the subsection describing the regularity of the solution near the vertices were originally published in [138]. The Mellin calculus is used in Sect. 9.3 to analyze the regularity of the solution at the tip of an interface crack. In Sect. 9.4 to analyze the mixed boundary value problem for the Laplacian with the hyper singular operator and the singular behaviour of its solution at the point where Dirichlet and Neumann conditions meet and in Sect. 9.5 to analyze the mapping propeties of boundary integral operators with countably normed spaces. In the frame work of the spaces the analysis of the exponential convergence of the hp Galerkin approximation is presented in Sect.  8.1.


  1. 114.
    M. Costabel, Boundary integral operators on Lipschitz domains: elementary results. SIAM J. Math. Anal. 19, 613–626 (1988)MathSciNetCrossRefGoogle Scholar
  2. 125.
    M. Costabel, E. Stephan, W.L. Wendland, Zur Randintegralmethode für das erste Fundamentalproblem der ebenen Elastizitätstheorie auf Polygongebieten. Recent Trends in Mathematics (Reinhardsbrunn, 1982). Teubner-Texte zur Math., vol. 50 (Teubner, Leipzig, 1982), pp. 56–68Google Scholar
  3. 128.
    M. Costabel, E.P. Stephan, Boundary Integral Equation for Mixed Boundary Value Problem in Polygonal Domains and Galerkin Approximation. Mathematical Models and Methods in Mechanics. Banach Center Publications, vol. 15 (PWN - Polish Scientific Publishers, 1985), pp. 175–251Google Scholar
  4. 129.
    M. Costabel, E.P. Stephan, A direct boundary integral equation method for transmission problems. J. Math. Anal. Appl. 106, 367–413 (1985)MathSciNetCrossRefGoogle Scholar
  5. 138.
    M. Costabel, E.P. Stephan, W.L. Wendland, On boundary integral equations of the first kind for the bi-Laplacian in a polygonal plane domain. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 10, 197–241 (1983)Google Scholar
  6. 152.
    J. Elschner, The double layer potential operator over polyhedral domains. I. Solvability in weighted Sobolev spaces. Appl. Anal. 45, 117–134 (1992)zbMATHGoogle Scholar
  7. 153.
    J. Elschner, The double layer potential operator over polyhedral domains. II. Spline Galerkin methods. Math. Methods Appl. Sci. 15, 23–37 (1992)MathSciNetCrossRefGoogle Scholar
  8. 154.
    J. Elschner, The h-p-version of spline approximation methods for Mellin convolution equations. J. Integr. Equ. Appl. 5, 47–73 (1993)MathSciNetCrossRefGoogle Scholar
  9. 167.
    G.I. Eskin, Boundary Value Problems for Elliptic Pseudodifferential Equations. Translations of Mathematical Monographs, vol. 52 (American Mathematical Society, Providence, RI, 1981)Google Scholar
  10. 204.
    P. Grisvard, Elliptic Problems in Nonsmooth Domains. Monographs and Studies in Mathematics, vol. 24 (Pitman (Advanced Publishing Program), Boston, MA, 1985). Reprint 2011Google Scholar
  11. 241.
    N. Heuer, E.P. Stephan, Boundary integral operators in countably normed spaces. Math. Nachr. 191, 123–151 (1998)MathSciNetCrossRefGoogle Scholar
  12. 242.
    N. Heuer, E.P. Stephan, The Poincaré-Steklov Operator Within Countably Normed Spaces. Mathematical Aspects of Boundary Element Methods (Palaiseau, 1998). Res. Notes Math., vol. 414 (Chapman & Hall/CRC, Boca Raton, FL, 2000), pp. 152–164Google Scholar
  13. 284.
    J.-L. Lions, E. Magenes, Non-homogeneous Boundary Value Problems and Applications. Vol. I. Grundlehren der mathematischen Wissenschaften, vol. 181 (Springer, New York-Heidelberg, 1972). Translated from the French by P. KennethGoogle Scholar
  14. 351.
    S. Rempel, G. Schmidt, Eigenvalues for spherical domains with corners via boundary integral equations. Integr. Equ. Oper. Theory 14, 229–250 (1991)MathSciNetCrossRefGoogle Scholar
  15. 367.
    H. Schmitz, K. Volk, W.L. Wendland, Three-dimensional singularities of elastic fields near vertices. Numer. Methods Partial Differ. Equ. 9, 323–337 (1993)MathSciNetCrossRefGoogle Scholar
  16. 404.
    E.P. Stephan, M. Suri, On the convergence of the p-version of the boundary element Galerkin method. Math. Comput. 52, 31–48 (1989)MathSciNetzbMATHGoogle Scholar
  17. 405.
    E.P. Stephan, M. Suri, The h-p version of the boundary element method on polygonal domains with quasiuniform meshes. RAIRO Modél. Math. Anal. Numér. 25, 783–807 (1991)MathSciNetCrossRefGoogle Scholar
  18. 408.
    E.P. Stephan, W.L. Wendland, Remarks to Galerkin and Least Squares Methods with Finite Elements for General Elliptic Problems. Ordinary and Partial Differential Equations (Proc. Fourth Conf., Univ. Dundee, Dundee, 1976). Lecture Notes in Math., vol. 564 (Springer, Berlin, 1976), pp. 461–471CrossRefGoogle Scholar
  19. 422.
    T. von Petersdorff, Boundary integral equations for mixed Dirichlet, Neumann and transmission problems. Math. Methods Appl. Sci. 11, 185–213 (1989)CrossRefGoogle Scholar
  20. 424.
    T. von Petersdorff, E.P. Stephan, A Direct Boundary Element Method for Interface Crack Problems. Computational Mechanics ‘88 (Springer, 1988). In: Proceedings Atlanta, Vol 1, pp. 11.vii.1–11.vii.5Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Joachim Gwinner
    • 1
  • Ernst Peter Stephan
    • 2
  1. 1.Fakultät für Luft- und RaumfahrttechnikUniversität der Bundeswehr MünchenNeubiberg/MünchenGermany
  2. 2.Institut für Angewandte MathematikLeibniz Universität HannoverHannoverGermany

Personalised recommendations