Advertisement

Exponential Convergence of hp-BEM

  • Joachim Gwinner
  • Ernst Peter Stephan
Chapter
Part of the Springer Series in Computational Mathematics book series (SSCM, volume 52)

Abstract

The first section of this chapter collects results from [240] which gives a further contribution to the analysis of the hp-version of the boundary element method (BEM) by presenting a more general result for Dirichlet and Neumann problems than [21] allowing the use of a general geometric mesh refinement on the polygonal boundary Γ. Here as in [240] we prove the exponential convergence of the hp- version of the boundary element method by exploiting only features of the solutions of the boundary integral equations. The key result in this approach is an asymptotic expansion of the solution of the integral equations in singularity functions reflecting the singular behaviour of the solutions near corners of Γ. With such expansions we show that the solutions of the integral equations belong to countably normed spaces. Therefore these solutions can be approximated exponentially fast in the energy norm via the hp- Galerkin solutions of those integral equations. This result is not restricted to integral equations which stem from boundary value problems for the Laplacian but applies to Helmholtz problems as well. Further applications are 2D crack problems in linear elasticity. For numerical experiments with hp-version (BEM) see [165, 340].

References

  1. 17.
    I. Babuška, B.Q. Guo, The h-p version of the finite element method, part 1: The basic approximation results. Comput. Mech. 1, 21–41 (1986)CrossRefGoogle Scholar
  2. 18.
    I. Babuška, B.Q. Guo, The h-p version of the finite element method, part 2: General results and applications. Comput. Mech. 1, 203–220 (1986)CrossRefGoogle Scholar
  3. 19.
    I. Babuška, B.Q. Guo, Regularity of the solution of elliptic problems with piecewise analytic data. I. Boundary value problems for linear elliptic equation of second order. SIAM J. Math. Anal. 19, 172–203 (1988)zbMATHGoogle Scholar
  4. 21.
    I. Babuška, B.Q. Guo, E.P. Stephan, On the exponential convergence of the h-p version for boundary element Galerkin methods on polygons. Math. Methods Appl. Sci. 12, 413–427 (1990)MathSciNetCrossRefGoogle Scholar
  5. 51.
    A. Bespalov, N. Heuer, The p-version of the boundary element method for weakly singular operators on piecewise plane open surfaces. Numer. Math. 106, 69–97 (2007)MathSciNetCrossRefGoogle Scholar
  6. 114.
    M. Costabel, Boundary integral operators on Lipschitz domains: elementary results. SIAM J. Math. Anal. 19, 613–626 (1988)MathSciNetCrossRefGoogle Scholar
  7. 119.
    M. Costabel, M. Dauge, S. Nicaise, Analytic regularity for linear elliptic systems in polygons and polyhedra. Math. Models Methods Appl. Sci. 22, 1250015, 63 (2012)MathSciNetCrossRefGoogle Scholar
  8. 126.
    M. Costabel, E.P. Stephan, Curvature terms in the asymptotic expansions for solutions of boundary integral equations on curved polygons. J. Integr. Equ. 5, 353–371 (1983)MathSciNetzbMATHGoogle Scholar
  9. 127.
    M. Costabel, E.P. Stephan, The normal derivative of the double layer potential on polygons and Galerkin approximation. Appl. Anal. 16, 205–228 (1983)MathSciNetCrossRefGoogle Scholar
  10. 128.
    M. Costabel, E.P. Stephan, Boundary Integral Equation for Mixed Boundary Value Problem in Polygonal Domains and Galerkin Approximation. Mathematical Models and Methods in Mechanics. Banach Center Publications, vol. 15 (PWN - Polish Scientific Publishers, 1985), pp. 175–251Google Scholar
  11. 129.
    M. Costabel, E.P. Stephan, A direct boundary integral equation method for transmission problems. J. Math. Anal. Appl. 106, 367–413 (1985)MathSciNetCrossRefGoogle Scholar
  12. 141.
    M. Dauge, Elliptic Boundary Value Problems on Corner Domains. Smoothness and Asymptotics of Solutions. Lecture Notes in Mathematics, vol. 1341 (Springer, Berlin, 1988)Google Scholar
  13. 154.
    J. Elschner, The h-p-version of spline approximation methods for Mellin convolution equations. J. Integr. Equ. Appl. 5, 47–73 (1993)MathSciNetCrossRefGoogle Scholar
  14. 165.
    V.J. Ervin, N. Heuer, E.P. Stephan, On the h-p version of the boundary element method for Symm’s integral equation on polygons. Comput. Methods Appl. Mech. Eng. 110, 25–38 (1993)MathSciNetCrossRefGoogle Scholar
  15. 207.
    B.Q. Guo, The h-p Version of the Finite Element Method for Solving Boundary Value Problems in Polyhedral Domains. Boundary Value Problems and Integral Equations in Nonsmooth Domains (Luminy, 1993). Lecture Notes in Pure and Appl. Math., vol. 167 (Dekker, New York, 1995), pp. 101–120Google Scholar
  16. 210.
    B.Q. Guo, N. Heuer, E.P. Stephan, The h-p version of the boundary element method for transmission problems with piecewise analytic data. SIAM J. Numer. Anal. 33, 789–808 (1996)MathSciNetCrossRefGoogle Scholar
  17. 211.
    B.Q. Guo, T. von Petersdorff, E.P. Stephan, An hp Version of the Boundary Element Method for Plane Mixed Boundary Value Problems. Advances in Boundary Elements. Comput. Mech., vol. 1 (Springer, Berlin, 1989), pp. 95–103Google Scholar
  18. 235.
    N. Heuer, M. Maischak, E.P. Stephan, Exponential convergence of the hp-version for the boundary element method on open surfaces. Numer. Math. 83, 641–666 (1999)MathSciNetCrossRefGoogle Scholar
  19. 240.
    N. Heuer, E.P. Stephan, The hp-version of the boundary element method on polygons. J. Integr. Equ. Appl. 8, 173–212 (1996)MathSciNetCrossRefGoogle Scholar
  20. 241.
    N. Heuer, E.P. Stephan, Boundary integral operators in countably normed spaces. Math. Nachr. 191, 123–151 (1998)MathSciNetCrossRefGoogle Scholar
  21. 250.
    H. Holm, M. Maischak, E.P. Stephan, The hp-version of the boundary element method for Helmholtz screen problems. Computing 57, 105–134 (1996)MathSciNetCrossRefGoogle Scholar
  22. 251.
    H. Holm, M. Maischak, E.P. Stephan, Exponential convergence of the h-p version BEM for mixed boundary value problems on polyhedrons. Math. Methods Appl. Sci. 31, 2069–2093 (2008)MathSciNetCrossRefGoogle Scholar
  23. 256.
    G.C. Hsiao, E.P. Stephan, W.L. Wendland, On the Dirichlet problem in elasticity for a domain exterior to an arc. J. Comput. Appl. Math. 34, 1–19 (1991)MathSciNetCrossRefGoogle Scholar
  24. 290.
    M. Maischak, hp-methoden für randintegralgleichungen bei 3d-problemen, theorie und implementierung, Ph.D. thesis, Leibniz Universität Hannover, 1996Google Scholar
  25. 295.
    M. Maischak, E.P. Stephan, The hp-version of the boundary element method in R 3: the basic approximation results. Math. Methods Appl. Sci. 20, 461–476 (1997)MathSciNetCrossRefGoogle Scholar
  26. 300.
    M. Maischak, E.P. Stephan, The hp-Version of the Boundary Element Method for the Lamé Equation in 3D. Boundary Element Analysis. Lect. Notes Appl. Comput. Mech., vol. 29 (Springer, Berlin, 2007), pp. 97–112Google Scholar
  27. 340.
    F.V. Postell, E.P. Stephan, On the h-, p- and h-p versions of the boundary element method—numerical results. Comput. Methods Appl. Mech. Eng. 83, 69–89 (1990)MathSciNetCrossRefGoogle Scholar
  28. 368.
    D. Schötzau, Ch. Schwab, Exponential convergence for hp-version and spectral finite element methods for elliptic problems in polyhedra. Math. Models Methods Appl. Sci. 25, 1617–1661 (2015)MathSciNetCrossRefGoogle Scholar
  29. 374.
    Ch. Schwab, M. Suri, The optimal p-version approximation of singularities on polyhedra in the boundary element method. SIAM J. Numer. Anal. 33, 729–759 (1996)MathSciNetCrossRefGoogle Scholar
  30. 398.
    E.P. Stephan, Boundary integral equations for screen problems in R 3. Integr. Equ. Oper. Theory 10, 236–257 (1987)MathSciNetCrossRefGoogle Scholar
  31. 400.
    E.P. Stephan, The h-p boundary element method for solving 2- and 3-dimensional problems. Comput. Methods Appl. Mech. Eng. 133, 183–208 (1996)MathSciNetCrossRefGoogle Scholar
  32. 405.
    E.P. Stephan, M. Suri, The h-p version of the boundary element method on polygonal domains with quasiuniform meshes. RAIRO Modél. Math. Anal. Numér. 25, 783–807 (1991)MathSciNetCrossRefGoogle Scholar
  33. 408.
    E.P. Stephan, W.L. Wendland, Remarks to Galerkin and Least Squares Methods with Finite Elements for General Elliptic Problems. Ordinary and Partial Differential Equations (Proc. Fourth Conf., Univ. Dundee, Dundee, 1976). Lecture Notes in Math., vol. 564 (Springer, Berlin, 1976), pp. 461–471CrossRefGoogle Scholar
  34. 425.
    T. von Petersdorff, E.P. Stephan, Decompositions in edge and corner singularities for the solution of the Dirichlet problem of the Laplacian in a polyhedron. Math. Nachr. 149, 71–103 (1990)MathSciNetCrossRefGoogle Scholar
  35. 426.
    T. von Petersdorff, E.P. Stephan, Regularity of mixed boundary value problems in R 3 and boundary element methods on graded meshes. Math. Methods Appl. Sci. 12, 229–249 (1990)MathSciNetCrossRefGoogle Scholar
  36. 432.
    W.L. Wendland, E.P. Stephan, A hypersingular boundary integral method for two-dimensional screen and crack problems. Arch. Ration. Mech. Anal. 112, 363–390 (1990)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Joachim Gwinner
    • 1
  • Ernst Peter Stephan
    • 2
  1. 1.Fakultät für Luft- und RaumfahrttechnikUniversität der Bundeswehr MünchenNeubiberg/MünchenGermany
  2. 2.Institut für Angewandte MathematikLeibniz Universität HannoverHannoverGermany

Personalised recommendations