Advertisement

A Primer to Boundary Element Methods

  • Joachim Gwinner
  • Ernst Peter Stephan
Chapter
Part of the Springer Series in Computational Mathematics book series (SSCM, volume 52)

Abstract

This chapter introduces the BEM in its h −version. First we make Fourier expansion of Chap.  3 more precise by asymptotic error estimates. Then we prove direct and inverse approximation estimates for periodic spline approximation on curves. Hence we develop the analysis of Galerkin methods and collocation methods for Symm’s integral equation towards optimal a priori error estimates. Moreover, we subsume Galerkin and collocation methods as general projection methods. To this end we extend the above treatment of positive definite bilinear forms to the analysis of a sequence of linear operators that satisfy a uniform Gårding inequality and establish stability and optimal a priori error estimates in this more general setting. Interpreting several variants of collocation methods that combine collocation and quadrature as extended Galerkin methods we include their numerical analysis as well. Then augmenting the boundary element ansatz spaces by known singularity functions the Galerkin method is shown to converge with higher convergence rates. Finally to obtain higher convergence rates in weaker norms than the energy norm the Aubin–Nitsche duality estimates of FEM are extended to BEM so that it allows the incorporation of the singular solution expansion for nonsmooth domains. Sections 6.1–6.4 are based on the classroom notes by M. Costabel [116] whereas Sects. 6.5.1–6.5.6 are based on the classroom notes by W.L. Wendland [430]. Improved estimates of local type, pointwise estimates and postprocessing with the K-operator are considered in Sects. 6.5.7–6.5.9. Discrete collocation with trigonometric polynomials, where the concept of finite section operators is used, is a subject of Sect. 6.6. In Sect. 6.7 the standard BEM is enriched by special singularity functions modelling the behaviour of the solution near corners, thus yielding improved convergence. In Sect. 6.8 Galerkin-Petrov methods are considered. Section 6.9 presents the Arnold-Wendland approach to reformulate a collocation method as a Galerkin method whereas qualocation is investigated in Sect. 6.10. In Sect. 6.11 the use of radial basis functions (a meshless method) and of spherical splines in the Galerkin scheme is demonstrated for problems on the unit sphere. Integral equations of the first kind with the single layer and double layer potentials are our main subject. Integral equations of the second kind are studied only briefly, e.g. at the end of Sect. 6.4.

References

  1. 2.
    P.M. Anselone, Collectively Compact Operator Approximation Theory and Applications to Integral Equations (Prentice-Hall, Englewood Cliffs, NJ, 1971)Google Scholar
  2. 3.
    D.N. Arnold, W.L. Wendland, On the asymptotic convergence of collocation methods. Math. Comput. 41, 349–381 (1983)MathSciNetzbMATHGoogle Scholar
  3. 4.
    K.E. Atkinson, A discrete Galerkin method for first kind integral equations with a logarithmic kernel. J. Integr. Equ. Appl. 1, 343–363 (1988)MathSciNetzbMATHGoogle Scholar
  4. 5.
    K.E. Atkinson, I.H. Sloan, The numerical solution of first-kind logarithmic-kernel integral equations on smooth open arcs. Math. Comput. 56, 119–139 (1991)MathSciNetzbMATHGoogle Scholar
  5. 7.
    J.-P. Aubin, Approximation of Elliptic Boundary-Value Problems. Pure and Applied Mathematics, Vol. XXVI (Wiley-Interscience, New York-London-Sydney, 1972)Google Scholar
  6. 14.
    I. Babuška, A.K. Aziz, Survey Lectures on the Mathematical Foundations of the Finite Element Method. The Mathematical Foundations of the Finite Element Method with Applications to Partial Differential Equations (Proc. Sympos., Univ. Maryland, Baltimore, MD, 1972). Academic Press, New York, 1972, With the collaboration of G. Fix and R. B. Kellogg, pp. 1–359Google Scholar
  7. 61.
    J.H. Bramble, A.H. Schatz, Higher order local accuracy by averaging in the finite element method. Math. Comput. 31, 94–111 (1977)MathSciNetzbMATHGoogle Scholar
  8. 95.
    G.A. Chandler, I.G. Graham, Product integration-collocation methods for noncompact integral operator equations. Math. Comput. 50(181), 125–138 (1988)MathSciNetzbMATHGoogle Scholar
  9. 96.
    G.A. Chandler, I.H. Sloan, Spline qualocation methods for boundary integral equations. Numer. Math. 58, 537–567 (1990)Google Scholar
  10. 97.
    D. Chen, V.A. Menegatto, X. Sun, A necessary and sufficient condition for strictly positive definite functions on spheres. Proc. Am. Math. Soc. 131, 2733–2740 (2003)Google Scholar
  11. 106.
    P.G. Ciarlet, The Finite Element Method for Elliptic Problems. Classics in Applied Mathematics, vol. 40 (Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2002)Google Scholar
  12. 116.
    M. Costabel, Randelemente (Vorlesungsmanuskript, TU Darmstadt, 1989)Google Scholar
  13. 122.
    M. Costabel, V.J. Ervin, E.P. Stephan, Quadrature and collocation methods for the double layer potential on polygons. Z. Anal. Anwendungen 12, 699–707 (1993)MathSciNetzbMATHGoogle Scholar
  14. 128.
    M. Costabel, E.P. Stephan, Boundary Integral Equation for Mixed Boundary Value Problem in Polygonal Domains and Galerkin Approximation. Mathematical Models and Methods in Mechanics. Banach Center Publications, vol. 15 (PWN - Polish Scientific Publishers, 1985), pp. 175–251Google Scholar
  15. 131.
    M. Costabel, E.P. Stephan, On the convergence of collocation methods for boundary integral equations on polygons. Math. Comput. 49, 461–478 (1987)MathSciNetzbMATHGoogle Scholar
  16. 134.
    M. Costabel, E.P. Stephan, Duality estimates for the numerical solution of integral equations. Numer. Math. 54, 339–353 (1988)MathSciNetzbMATHGoogle Scholar
  17. 155.
    J. Elschner, I.G. Graham, An optimal order collocation method for first kind boundary integral equations on polygons. Numer. Math. 70, 1–31 (1995)MathSciNetzbMATHGoogle Scholar
  18. 156.
    J. Elschner, I.G. Graham, Quadrature methods for Symm’s integral equation on polygons. IMA J. Numer. Anal. 17, 643–664 (1997)MathSciNetzbMATHGoogle Scholar
  19. 157.
    J. Elschner, I.G. Graham, Numerical methods for integral equations of Mellin type. J. Comput. Appl. Math. 125(1–2), 423–437 (2000)MathSciNetzbMATHGoogle Scholar
  20. 158.
    J. Elschner, Y. Jeon, I.H. Sloan, E.P. Stephan, The collocation method for mixed boundary value problems on domains with curved polygonal boundaries. Numer. Math. 76, 355–381 (1997)MathSciNetzbMATHGoogle Scholar
  21. 159.
    J. Elschner, E.P. Stephan, A discrete collocation method for Symm’s integral equation on curves with corners. J. Comput. Appl. Math. 75, 131–146 (1996)MathSciNetzbMATHGoogle Scholar
  22. 166.
    V.J. Ervin, E.P. Stephan, Collocation with Chebyshev polynomials for a hypersingular integral equation on an interval. J. Comput. Appl. Math. 43, 221–229 (1992)MathSciNetzbMATHGoogle Scholar
  23. 180.
    G.J. Fix, S. Gulati, G.I. Wakoff, On the use of singular functions with finite element approximations. J. Comput. Phys. 13, 209–228 (1973)MathSciNetzbMATHGoogle Scholar
  24. 202.
    I.C. Gohberg, I.A. Feldman, Convolution Equations and Projection Methods for Their Solution (American Mathematical Society, Providence, RI, 1974). Translations of Mathematical Monographs, Vol. 41Google Scholar
  25. 230.
    T. Hartmann, E.P. Stephan, Rates of convergence for collocation with Jacobi polynomials for the airfoil equation. J. Comput. Appl. Math. 51, 179–191 (1994)MathSciNetzbMATHGoogle Scholar
  26. 231.
    T. Hartmann, E.P. Stephan, A Discrete Collocation Method for a Hypersingular Integral Equation on Curves with Corners. Contemporary Computational Mathematics - a Celebration of the 80th Birthday of Ian Sloan (Springer, 2018)Google Scholar
  27. 243.
    N. Heuer, T. Tran, Radial basis functions for the solution of hypersingular operators on open surfaces. Comput. Math. Appl. 63, 1504–1518 (2012)MathSciNetzbMATHGoogle Scholar
  28. 255.
    G.C. Hsiao, O. Steinbach, W.L. Wendland, Domain decomposition methods via boundary integral equations. J. Comput. Appl. Math. 125, 521–537 (2000)MathSciNetzbMATHGoogle Scholar
  29. 256.
    G.C. Hsiao, E.P. Stephan, W.L. Wendland, On the Dirichlet problem in elasticity for a domain exterior to an arc. J. Comput. Appl. Math. 34, 1–19 (1991)MathSciNetzbMATHGoogle Scholar
  30. 257.
    G.C. Hsiao, W.L. Wendland, A finite element method for some integral equations of the first kind. J. Math. Anal. Appl. 58, 449–481 (1977)MathSciNetzbMATHGoogle Scholar
  31. 258.
    G.C. Hsiao, W.L. Wendland, The Aubin-Nitsche lemma for integral equations. J. Integr. Equ. 3, 299–315 (1981)Google Scholar
  32. 262.
    Y. Jeon, I.H. Sloan, E.P. Stephan, J. Elschner, Discrete qualocation methods for logarithmic-kernel integral equations on a piecewise smooth boundary. Adv. Comput. Math. 7, 547–571 (1997)Google Scholar
  33. 273.
    M.A. Krasnosel’skiı̆, G.M. Vaı̆nikko, P.P. Zabreı̆ko, Ya.B. Rutitskii, V.Ya. Stetsenko, Approximate Solution of Operator Equations (Wolters-Noordhoff Publishing, Groningen, 1972)Google Scholar
  34. 276.
    R. Kress, Linear Integral Equations, 3rd edn. Applied Mathematical Sciences, vol. 82 (Springer, New York, 2014)Google Scholar
  35. 279.
    U. Lamp, T. Schleicher, E.P. Stephan, W.L. Wendland, Galerkin collocation for an improved boundary element method for a plane mixed boundary value problem. Computing 33, 269–296 (1984)MathSciNetzbMATHGoogle Scholar
  36. 280.
    U. Langer, O. Steinbach, Boundary element tearing and interconnecting methods. Computing 71, 205–228 (2003)MathSciNetzbMATHGoogle Scholar
  37. 304.
    W. McLean, Strongly Elliptic Systems and Boundary Integral Equations (Cambridge University Press, Cambridge, 2000)Google Scholar
  38. 305.
    W. McLean, S. Prössdorf, W.L. Wendland, A fully-discrete trigonometric collocation method. J. Integr. Equ. Appl. 5, 103–129 (1993)MathSciNetzbMATHGoogle Scholar
  39. 315.
    F.J. Narcowich, J.D. Ward, Scattered data interpolation on spheres: error estimates and locally supported basis functions. SIAM J. Math. Anal. 33, 1393–1410 (2002)MathSciNetzbMATHGoogle Scholar
  40. 318.
    M. Neamtu, L.L. Schumaker, On the approximation order of splines on spherical triangulations. Adv. Comput. Math. 21, 3–20 (2004)MathSciNetzbMATHGoogle Scholar
  41. 320.
    J.C. Nédélec, Approximation des équations intégrales en mécanique et en physique (Ecole Polytechnique, Palaiseau, 1977)Google Scholar
  42. 323.
    J.C. Nédélec, Acoustic and Electromagnetic Equations. Integral Representations for Harmonic Problems. Applied Mathematical Sciences, vol. 144 (Springer, New York, 2001)Google Scholar
  43. 324.
    J.C. Nédélec, J. Planchard, Une méthode variationnelle d’ éléments finis pour la résolution numérique d’un problème extérieur dans R 3. Rev. Franc. Automat. Informat. Rech. Operat. Sér. Rouge 7, 105–129 (1973)Google Scholar
  44. 328.
    J. Nitsche, Ein Kriterium für die Quasi-Optimalität des Ritzschen Verfahrens. Numer. Math. 11, 346–348 (1968)MathSciNetzbMATHGoogle Scholar
  45. 338.
    T.D. Pham, T. Tran, Strongly elliptic pseudodifferential equations on the sphere with radial basis functions. Numer. Math. 128, 589–614 (2014)MathSciNetzbMATHGoogle Scholar
  46. 339.
    T.D. Pham, T. Tran, A. Chernov, Pseudodifferential equations on the sphere with spherical splines. Math. Models Methods Appl. Sci. 21, 1933–1959 (2011)MathSciNetzbMATHGoogle Scholar
  47. 344.
    S. Prössdorf, A. Rathsfeld, Quadrature and collocation methods for singular integral equations on curves with corners. Z. Anal. Anwendungen 8, 197–220 (1989)MathSciNetzbMATHGoogle Scholar
  48. 345.
    S. Prössdorf, B. Silbermann, Numerical Analysis for Integral and Related Operator Equations. Operator Theory: Advances and Applications, vol. 52 (Birkhäuser Verlag, Basel, 1991)Google Scholar
  49. 349.
    R. Rannacher, W.L. Wendland, On the order of pointwise convergence of some boundary element methods. I. Operators of negative and zero order. RAIRO Modél. Math. Anal. Numér. 19, 65–87 (1985)Google Scholar
  50. 350.
    R. Rannacher, W.L. Wendland, Pointwise convergence of some boundary element methods. II. RAIRO Modél. Math. Anal. Numér. 22, 343–362 (1988)Google Scholar
  51. 354.
    E.B. Saff, A.B.J. Kuijlaars, Distributing many points on a sphere. Math. Intell. 19, 5–11 (1997)MathSciNetzbMATHGoogle Scholar
  52. 355.
    J. Saranen, Local error estimates for some Petrov-Galerkin methods applied to strongly elliptic equations on curves. Math. Comput. 48, 485–502 (1987)MathSciNetzbMATHGoogle Scholar
  53. 356.
    J. Saranen, G. Vainikko, Periodic Integral and Pseudodifferential Equations with Numerical Approximation. Springer Monographs in Mathematics (Springer, Berlin, 2002)Google Scholar
  54. 357.
    J. Saranen, W.L. Wendland, On the asymptotic convergence of collocation methods with spline functions of even degree. Math. Comput. 45, 91–108 (1985)MathSciNetzbMATHGoogle Scholar
  55. 362.
    A.H. Schatz, V. Thomée, W.L. Wendland, Mathematical Theory of Finite and Boundary Element Methods. DMV Seminar, vol. 15 (Birkhäuser Verlag, Basel, 1990)Google Scholar
  56. 363.
    A.H. Schatz, L.B. Wahlbin, Interior maximum norm estimates for finite element methods. Math. Comput. 31, 414–442 (1977)MathSciNetzbMATHGoogle Scholar
  57. 365.
    G. Schmidt, On spline collocation methods for boundary integral equations in the plane. Math. Methods Appl. Sci. 7, 74–89 (1985)MathSciNetGoogle Scholar
  58. 366.
    G. Schmidt, Boundary element discretization of Poincaré-Steklov operators. Numer. Math. 69, 83–101 (1994)Google Scholar
  59. 378.
    I.H. Sloan, A quadrature-based approach to improving the collocation method. Numer. Math. 54, 41–56 (1988)MathSciNetzbMATHGoogle Scholar
  60. 379.
    I.H. Sloan, Error Analysis of Boundary Integral Methods. Acta Numerica, 1992 (Cambridge Univ. Press, Cambridge, 1992), pp. 287–339Google Scholar
  61. 381.
    I.H. Sloan, E.P. Stephan, Collocation with Chebyshev polynomials for Symm’s integral equation on an interval. J. Aust. Math. Soc. Ser. B 34, 199–211 (1992)MathSciNetzbMATHGoogle Scholar
  62. 382.
    I.H. Sloan, T. Tran, The tolerant qualocation method for variable-coefficient elliptic equations on curves. J. Integr. Equ. Appl. 13, 73–98 (2001)MathSciNetzbMATHGoogle Scholar
  63. 383.
    I.H. Sloan, W.L. Wendland, Commutator properties for periodic splines. J. Approx. Theory 97, 254–281 (1999)MathSciNetzbMATHGoogle Scholar
  64. 385.
    I.H. Sloan, W.L. Wendland, Qualocation methods for elliptic boundary integral equations. Numer. Math. 79, 451–483 (1998)MathSciNetzbMATHGoogle Scholar
  65. 406.
    E.P. Stephan, M.T. Teltscher, Collocation with trigonometric polynomials for integral equations to the mixed boundary value problem. Numerische Mathematik (2018, to appear)Google Scholar
  66. 407.
    E.P. Stephan, T. Tran, Localization and post processing for the Galerkin boundary element method applied to three-dimensional screen problems. J. Integr. Equ. Appl. 8, 457–481 (1996)MathSciNetzbMATHGoogle Scholar
  67. 408.
    E.P. Stephan, W.L. Wendland, Remarks to Galerkin and Least Squares Methods with Finite Elements for General Elliptic Problems. Ordinary and Partial Differential Equations (Proc. Fourth Conf., Univ. Dundee, Dundee, 1976). Lecture Notes in Math., vol. 564 (Springer, Berlin, 1976), pp. 461–471Google Scholar
  68. 412.
    G. Strang, G.J. Fix, An Analysis of the Finite Element Method (Prentice-Hall, Englewood Cliffs, NJ, 1973)Google Scholar
  69. 416.
    T. Tran, The K-operator and the Galerkin method for strongly elliptic equations on smooth curves: local estimates. Math. Comput. 64, 501–513 (1995)MathSciNetzbMATHGoogle Scholar
  70. 417.
    T. Tran, Local error estimates for the Galerkin method applied to strongly elliptic integral equations on open curves. SIAM J. Numer. Anal. 33, 1484–1493 (1996)MathSciNetzbMATHGoogle Scholar
  71. 418.
    T. Tran, Q.T. Le Gia, I.H. Sloan, E.P. Stephan, Boundary integral equations on the sphere with radial basis functions: error analysis. Appl. Numer. Math. 59, 2857–2871 (2009)MathSciNetzbMATHGoogle Scholar
  72. 419.
    T. Tran, I.H. Sloan, Tolerant qualocation—a qualocation method for boundary integral equations with reduced regularity requirement. J. Integr. Equ. Appl. 10, 85–115 (1998)MathSciNetzbMATHGoogle Scholar
  73. 420.
    T. Tran, E.P. Stephan, Additive Schwarz methods for the h-version boundary element method. Appl. Anal. 60, 63–84 (1996)MathSciNetzbMATHGoogle Scholar
  74. 427.
    H. Wendland, Scattered Data Approximation. Cambridge Monographs on Applied and Computational Mathematics, vol. 17 (Cambridge University Press, Cambridge, 2005)Google Scholar
  75. 428.
    W.L. Wendland, Asymptotic Convergence of Boundary Element Methods; Integral Equation Methods for Mixed bvp’s. Preprint 611 (TU Darmstadt, Fachbereich Mathematik, 1981)Google Scholar
  76. 429.
    W.L. Wendland, Boundary Element Methods and Their Asymptotic Convergence. Theoretical Acoustics and Numerical Techniques. CISM Courses and Lectures, vol. 277 (Springer, Vienna, 1983), pp. 135–216Google Scholar
  77. 430.
    W.L. Wendland, Randelementmethoden – eine Einführung (Vorlesungsmanuskript, TU Darmstadt, 1985)Google Scholar
  78. 431.
    W.L. Wendland, Qualocation, the new variety of boundary element methods. Wiss. Z. Tech. Univ. Karl-Marx-Stadt 31, 276–284 (1989)MathSciNetzbMATHGoogle Scholar
  79. 432.
    W.L. Wendland, E.P. Stephan, A hypersingular boundary integral method for two-dimensional screen and crack problems. Arch. Ration. Mech. Anal. 112, 363–390 (1990)MathSciNetzbMATHGoogle Scholar
  80. 433.
    W.L. Wendland, E.P. Stephan, G.C. Hsiao, On the integral equation method for the plane mixed boundary value problem of the Laplacian. Math. Methods Appl. Sci. 1, 265–321 (1979)MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Joachim Gwinner
    • 1
  • Ernst Peter Stephan
    • 2
  1. 1.Fakultät für Luft- und RaumfahrttechnikUniversität der Bundeswehr MünchenNeubiberg/MünchenGermany
  2. 2.Institut für Angewandte MathematikLeibniz Universität HannoverHannoverGermany

Personalised recommendations