Advertisement

Mixed BVPs, Transmission Problems and Pseudodifferential Operators

  • Joachim Gwinner
  • Ernst Peter Stephan
Chapter
Part of the Springer Series in Computational Mathematics book series (SSCM, volume 52)

Abstract

This chapter uses Fourier transform and the modern theory of pseudodifferential operators, see Appendix B.

References

  1. 41.
    A. Bendali, Numerical analysis of the exterior boundary value problem for the time-harmonic Maxwell equations by a boundary finite element method. I. The continuous problem. Math. Comput. 43, 29–46 (1984)MathSciNetzbMATHGoogle Scholar
  2. 42.
    A. Bendali, Numerical analysis of the exterior boundary value problem for the time-harmonic Maxwell equations by a boundary finite element method. II. The discrete problem. Math. Comput. 43, 47–68 (1984)MathSciNetzbMATHGoogle Scholar
  3. 107.
    X. Claeys, R. Hiptmair, Integral equations on multi-screens. Integr. Equ. Oper. Theory 77, 167–197 (2013)MathSciNetCrossRefGoogle Scholar
  4. 108.
    X. Claeys, R. Hiptmair, Integral equations for electromagnetic scattering at multi-screens. Integr. Equ. Oper. Theory 84, 33–68 (2016)MathSciNetCrossRefGoogle Scholar
  5. 124.
    M. Costabel, F. Penzel, R. Schneider, Convergence of boundary element collocation methods for Dirichlet and Neumann screen problems in R 3. Appl. Anal. 49, 101–117 (1993)Google Scholar
  6. 129.
    M. Costabel, E.P. Stephan, A direct boundary integral equation method for transmission problems. J. Math. Anal. Appl. 106, 367–413 (1985)MathSciNetCrossRefGoogle Scholar
  7. 130.
    M. Costabel, E.P. Stephan, An improved boundary element Galerkin method for three-dimensional crack problems. Integr. Equ. Oper. Theory 10, 467–504 (1987)MathSciNetCrossRefGoogle Scholar
  8. 135.
    M. Costabel, E.P. Stephan, Strongly elliptic boundary integral equations for electromagnetic transmission problems. Proc. Roy. Soc. Edinburgh Sect. A 109, 271–296 (1988)MathSciNetCrossRefGoogle Scholar
  9. 137.
    M. Costabel, E.P. Stephan, Integral equations for transmission problems in linear elasticity. J. Integr. Equ. Appl. 2, 211–223 (1990)MathSciNetCrossRefGoogle Scholar
  10. 167.
    G.I. Eskin, Boundary Value Problems for Elliptic Pseudodifferential Equations. Translations of Mathematical Monographs, vol. 52 (American Mathematical Society, Providence, RI, 1981)Google Scholar
  11. 253.
    L. Hörmander, Linear Partial Differential Operators (Springer, Berlin-New York, 1976)Google Scholar
  12. 259.
    G.C. Hsiao, W.L. Wendland, Boundary Integral Equations. Applied Mathematical Sciences, vol. 164 (Springer, Berlin, 2008)CrossRefGoogle Scholar
  13. 278.
    V.D. Kupradze, T.G. Gegelia, M.O. Basheleĭshvili, T.V. Burchuladze, Three-Dimensional Problems of the Mathematical Theory of Elasticity and Thermoelasticity (North-Holland, Amsterdam-New York, 1979)Google Scholar
  14. 284.
    J.-L. Lions, E. Magenes, Non-homogeneous Boundary Value Problems and Applications. Vol. I. Grundlehren der mathematischen Wissenschaften, vol. 181 (Springer, New York-Heidelberg, 1972). Translated from the French by P. KennethGoogle Scholar
  15. 285.
    R.C. MacCamy, E.P. Stephan, A Simple Layer Potential Method for Three-Dimensional Eddy Current Problems. Ordinary and Partial Differential Equations. Lecture Notes in Math., vol. 1964 (Springer, Berlin, 1982), pp. 477–484CrossRefGoogle Scholar
  16. 286.
    R.C. MacCamy, E.P. Stephan, A boundary element method for an exterior problem for three-dimensional Max-well’s equations. Appl. Anal. 16, 141–163 (1983)MathSciNetCrossRefGoogle Scholar
  17. 287.
    R.C. MacCamy, E.P. Stephan, Solution procedures for three-dimensional eddy current problems. J. Math. Anal. Appl. 101, 348–379 (1984)MathSciNetCrossRefGoogle Scholar
  18. 376.
    R. Seeley, Topics in Pseudo-Differential Operators. Pseudo-Diff. Operators (C.I.M.E., Stresa, 1968; Edizioni Cremonese, Rome, 1969), pp. 167–305CrossRefGoogle Scholar
  19. 395.
    E.P. Stephan, Solution Procedures for Interface Problems in Acoustics and Electromagnetics. Theoretical Acoustics and Numerical Techniques. CISM Courses and Lectures, vol. 277 (Springer, Vienna, 1983), pp. 291–348CrossRefGoogle Scholar
  20. 397.
    E.P. Stephan, Boundary integral equations for mixed boundary value problems in R 3. Math. Nachr. 134, 21–53 (1987)MathSciNetCrossRefGoogle Scholar
  21. 398.
    E.P. Stephan, Boundary integral equations for screen problems in R 3. Integr. Equ. Oper. Theory 10, 236–257 (1987)MathSciNetCrossRefGoogle Scholar
  22. 413.
    J.A. Stratton, Electromagnetic Rheory (Wiley, 2007)Google Scholar
  23. 415.
    M.E. Taylor, Pseudodifferential Operators. Princeton Mathematical Series, vol. 34 (Princeton University Press, Princeton, NJ, 1981)Google Scholar
  24. 432.
    W.L. Wendland, E.P. Stephan, A hypersingular boundary integral method for two-dimensional screen and crack problems. Arch. Ration. Mech. Anal. 112, 363–390 (1990)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Joachim Gwinner
    • 1
  • Ernst Peter Stephan
    • 2
  1. 1.Fakultät für Luft- und RaumfahrttechnikUniversität der Bundeswehr MünchenNeubiberg/MünchenGermany
  2. 2.Institut für Angewandte MathematikLeibniz Universität HannoverHannoverGermany

Personalised recommendations