Advertisement

Assessing the Impact of Single and Pairwise Slot Constraints in a Factor Graph Model for Template-Based Information Extraction

  • Hendrik ter Horst
  • Matthias Hartung
  • Roman Klinger
  • Nicole Brazda
  • Hans Werner Müller
  • Philipp Cimiano
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10859)

Abstract

Template-based information extraction generalizes over standard token-level binary relation extraction in the sense that it attempts to fill a complex template comprising multiple slots on the basis of information given in a text. In the approach presented in this paper, templates and possible fillers are defined by a given ontology. The information extraction task consists in filling these slots within a template with previously recognized entities or literal values. We cast the task as a structure prediction problem and propose a joint probabilistic model based on factor graphs to account for the interdependence in slot assignments. Inference is implemented as a heuristic building on Markov chain Monte Carlo sampling. As our main contribution, we investigate the impact of soft constraints modeled as single slot factors which measure preferences of individual slots for ranges of fillers, as well as pairwise slot factors modeling the compatibility between fillers of two slots. Instead of relying on expert knowledge to acquire such soft constraints, in our approach they are directly captured in the model and learned from training data. We show that both types of factors are effective in improving information extraction on a real-world data set of full-text papers from the biomedical domain. Pairwise factors are shown to particularly improve the performance of our extraction model by up to \({+}0.43\) points in precision, leading to an F\(_1\) score of 0.90 for individual templates.

Keywords

Ontology-based information extraction Slot filling Probabilistic graphical models Soft constraints Database population 

Notes

Acknowledgments

This work has been funded by the Federal Ministry of Education and Research (BMBF, Germany) in the PSINK project (project numbers 031L0028A/B).

References

  1. 1.
    Adel, H., Roth, B., Schütze, H.: Comparing convolutional neural networks to traditional models for slot filling. In: Proceedings of NAACL/HLT, pp. 828–838 (2016)Google Scholar
  2. 2.
    Banko, M., Cafarella, M., Soderland, S., Broadhead, M., Etzioni, O.: Open information extraction from the web. In: Proceedings of IJCAI, pp. 2670–2676 (2007)Google Scholar
  3. 3.
    Brazda, N., ter Horst, H., Hartung, M., Wiljes, C., Estrada, V., Klinger, R., Kuchinke, W., Müller, H.W., Cimiano, P.: SCIO: an ontology to support the formalization of pre-clinical spinal cord injury experiments. In: Proceedings of the 3rd JOWO Workshops: Ontologies and Data in the Life Sciences (2017)Google Scholar
  4. 4.
    Bunescu, R., Mooney, R.: Collective information extraction with relational markov networks. In: Proceedings of ACL, pp. 438–445 (2004)Google Scholar
  5. 5.
    Chang, M.W., Ratinov, L., Roth, D.: Structured learning with constrained conditional models. Mach. Learn. 88(3), 399–431 (2012)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Freitag, D.: Machine learning for information extraction in informal domains. Mach. Learn. 39(2–3), 169–202 (2000)CrossRefGoogle Scholar
  7. 7.
    Haghighi, A., Klein, D.: An entity-level approach to information extraction. In: Proceedings of ACL, pp. 291–295 (2010)Google Scholar
  8. 8.
    Henry, S., McInnes, B.: Literature based discovery: models, methods, and trends. J. Biomed. Inform. 74, 20–32 (2017)CrossRefGoogle Scholar
  9. 9.
    Kluegl, P., Toepfer, M., Lemmerich, F., Hotho, A., Puppe, F.: Collective information extraction with context-specific consistencies. In: Flach, P.A., De Bie, T., Cristianini, N. (eds.) ECML PKDD 2012. LNCS (LNAI), vol. 7523, pp. 728–743. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-33460-3_52CrossRefGoogle Scholar
  10. 10.
    Koller, D., Friedman, N.: Probabilistic Graphical Models: Principles and Techniques. MIT Press, Cambridge (2009)zbMATHGoogle Scholar
  11. 11.
    Kschischang, F.R., Frey, B.J., Loeliger, H.A.: Factor graphs and sum product algorithm. IEEE Trans. Inf. Theory 47(2), 498–519 (2001)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Lopez de Lacalle, O., Lapata, M.: Unsupervised relation extraction with general domain knowledge. In: Proceedings of EMNLP, pp. 415–425 (2013)Google Scholar
  13. 13.
    Mintz, M., Bills, S., Snow, R., Jurafsky, D.: Distant supervision for relation extraction without labeled data. In: Proceedings of ACL, pp. 1003–1011 (2009)Google Scholar
  14. 14.
    Paassen, B., Stöckel, A., Dickfelder, R., Göpfert, J.P., Brazda, N., Kirchhoffer, T., Müller, H.W., Klinger, R., Hartung, M., Cimiano, P.: Ontology-based extraction of structured information from publications on preclinical experiments for spinal cord injury treatments. In: Proceedings of the 3rd Workshop on Semantic Web and Information Extraction (SWAIE), pp. 25–32 (2014)Google Scholar
  15. 15.
    Riedel, S., Yao, L., McCallum, A., Marlin, B.M.: Relation extraction with matrix factorization and universal schemas. In: Proceedings of NAACL/HLT, pp. 74–84 (2013)Google Scholar
  16. 16.
    Singh, S., Yao, L., Belanger, D., Kobren, A., Anzaroot, S., Wick, M., Passos, A., Pandya, H., Choi, J.D., Martin, B., McCallum, A.: Universal schema for slot filling and cold start: UMass IESL at TACKBP 2013. In: Proceedings of TAC-KBP (2013)Google Scholar
  17. 17.
    Smith, N.A.: Linguistic Structure Prediction. Morgan and Claypool, San Rafael (2011)Google Scholar
  18. 18.
    Sundheim, B.M.: Overview of the fourth message understanding evaluation and conference. In: Proceedings of MUC, pp. 3–21 (1992)Google Scholar
  19. 19.
    Wick, M., Rohanimanesh, K., Culotta, A., McCallum, A.: SampleRank: learning preferences from atomic gradients. In: Proceedings of the NIPS Workshop on Advances in Ranking, pp. 1–5 (2009)Google Scholar
  20. 20.
    Wimalasuriya, D.C., Dou, D.: Ontology-based information extraction: an introduction and a survey of current approaches. J. Inf. Sci. 36(3), 306–323 (2010)CrossRefGoogle Scholar
  21. 21.
    Zhang, Y., Zhong, V., Chen, D., Angeli, G., Manning, C.D.: Position-aware attention and supervised data improve slot filling. In: Proceedings of EMNLP, pp. 35–45 (2017)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Hendrik ter Horst
    • 1
  • Matthias Hartung
    • 1
  • Roman Klinger
    • 2
  • Nicole Brazda
    • 3
  • Hans Werner Müller
    • 3
  • Philipp Cimiano
    • 1
  1. 1.CITECBielefeld UniversityBielefeldGermany
  2. 2.IMSUniversity of StuttgartStuttgartGermany
  3. 3.CNR and NeurologyHHU DüsseldorfDüsseldorfGermany

Personalised recommendations