Advertisement

Cactus Pear (Opuntia spp.) Breeding

  • Mouaad Amine Mazri
Chapter

Abstract

Cactus pear (Opuntia spp.) belongs to the family Cactaceae which is composed of about 130 genera and 2000 species. It is native to the tropical and subtropical regions of America but can be found in different regions of the world with various climate conditions. The fruit is an ovoid-spherical berry that, at maturity, may vary in color. Opuntia ficus indica is the most economically important and widely cultivated species of this genus. Cactus pear is an economically and ecologically important crop with various uses. It is cultivated for human consumption since its fruits are rich in carbohydrates, vitamins, proteins, minerals and antioxidants and have anti-cancer, anti-inflammatory, anti-viral, anti-diabetic and neuroprotective properties. The juice is rich in glucose and fructose and has a potent antioxidant activity. The cladodes of some species are edible as vegetables in salads. They are also used to feed cattle in arid and semiarid lands. The plants are well adapted to drought, high temperatures and low water availability and are able to absorb and hold CO2 excess from the atmosphere. Cactus pear is mainly propagated by cladodes. The breeding programs of this genus aim at the development of spineless cultivars with cold tolerance, high yield and fruit quality, and resistance to diseases and pests. To date, biotechnological tools have been scarcely used for cactus pear improvement. In the present chapter, the main problems, challenges, strategies and objectives of cactus pear breeding are described, and the recent achievements in terms of biotechnology and molecular biology are reported.

Keywords

Biotechnology Breeding Characterization Fruit Opuntia spp. 

References

  1. Abdel-Hameed ES, Nagaty MA, Salman MS, Bazaid SA (2014) Phytochemicals, nutritionals and antioxidant properties of two prickly pear cactus cultivars (Opuntia ficus indica Mill.) growing in Taif, KSA. Food Chem 160:31–38CrossRefGoogle Scholar
  2. Allegra A, Sortino G, Miciletta G et al (2015) The influence of harvest period and fruit ripeness at harvest on minimally processed cactus pears (Opuntia ficus-indica L. Mill.) stored under passive atmosphere. Postharvest Biol Technol 104:57–62CrossRefGoogle Scholar
  3. Andrade-Montemayor HM, Córdova-Torres AV, García-Gasca T, Kawas JR (2011) Alternative foods for small ruminants in semiarid zones, the case of mesquite (Prosopis laevigata spp.) and nopal (Opuntia spp.). Small Rumin Res 98:83–92CrossRefGoogle Scholar
  4. Angulo-Bejarano PI, Paredes-López O (2011) Development of a regeneration protocol through indirect organogenesis in prickly pear cactus (Opuntia ficus-indica (L.) Mill.). Sci Hort 128:283–288CrossRefGoogle Scholar
  5. Aversano R, Capomaccio S, Carputo D et al (2012) Variation of DNA methylation and phenotypic traits following unilateral sexual polyploidization in Medicago. Euphy 186:731–739CrossRefGoogle Scholar
  6. Bendhifi M, Baraket G, Zourgui L et al (2013) Assessment of genetic diversity of Tunisian Barbary fig (Opuntia ficus indica) cultivars by RAPD markers and morphological traits. Sci Hort 158:1–7CrossRefGoogle Scholar
  7. Boujghagh M (2011) Atlas du cactus (Opuntia spp.) de différentes provenances marocaines. INRA, RabatGoogle Scholar
  8. Boujghagh M, Bouharroud R, Mouhib M (2015) Germination of cactus (Opuntia ficus-indica) seeds irradiated with various doses of radiations mutagenic treatment. Acta Hort 1067:75–78CrossRefGoogle Scholar
  9. Bravo-Hollis H, Scheinvar L (1995) El interesante mundo de las cactáceas. Consejo Nacional de Ciencia y Tecnologia, MéxicoGoogle Scholar
  10. Camarena-Rangel NG, Barba-de la Rosa AP, Herrera-Corredor JA, Santos-Díaz MS (2017) Enhanced production of metabolites by elicitation in Opuntia ficus-indica, Opuntia megacantha, and Opuntia streptacantha callus. Plant Cell Tissue Organ Cult 129:289–298CrossRefGoogle Scholar
  11. Caruso M, Currò S, Las Casas G et al (2010) Microsatellite markers help to assess genetic diversity among O. ficus indica cultivated genotypes and their relation with related species. Plant Syst Evol 290:85–97CrossRefGoogle Scholar
  12. Chessa I (2010) Cactus pear genetic resources conservation, evaluation and uses. In: Nefzaoui A, Inglese P, Belay T (eds.) Cactusnet Newsletter: Improved utilization of cactus pear for food, feed, soil and water conservation and other products in Africa. Proceedings of international workshop, FAO, Mekelle, Oct 2009, pp 43–53Google Scholar
  13. Chessa I, Erre P, Barbato M et al (2013) Polymorphic microsatellite DNA markers in Opuntia spp. collections. Acta Hort 995:35–41CrossRefGoogle Scholar
  14. Coria Cayupàn YS, Ochoa MJ, Nazareno MA (2011) Health-promoting substances and antioxidant properties of Opuntia sp. fruits. Changes in bioactive-compound contents during ripening process. Food Chem 126:514–519CrossRefGoogle Scholar
  15. Costa RG, Trevino IH, de Medeiros GR et al (2012) Effects of replacing corn with cactus pear (Opuntia ficus indica Mill) on the performance of Santa Inês lambs. Small Rumin Res 102:13–17CrossRefGoogle Scholar
  16. Cruz ARR, Soares EL, Campos FAP, Aragão FJL (2009) Biolistic-mediated genetic transformation of prickly-pear cactus (Opuntia ficus-indica Mill.). Acta Hort 811:255–257CrossRefGoogle Scholar
  17. Cruz-Hernández A, Paredes-López O (2010) Enhancement of economical value of nopal and its fruits through biotechnology. J Prof Ass Cactus Dev 12:110–126Google Scholar
  18. De Cortázar VG, Nobel PS (1990) Wordwide environmental productivity indices and yield predictions for CAM plant, Opuntia ficus-indica, including effects of doubled CO2 levels. Agric For Meteorol 49:261–279CrossRefGoogle Scholar
  19. De Lyra MCC, Santos DC, Mondragón-Jacobo C et al (2013) Molecular characteristics of prickly-pear cactus (Opuntia) based on internal transcribed spacer sequences (ITS) of Queretaro State—Mexico. J Appl Biol Biotechnol 1:6–10Google Scholar
  20. Dubeux JCB, dos Santos MVF, Lira MA et al (2006) Productivity of Opuntia ficus-indica (L.). Miller under different N and P fertilization and plant population in North-East Brazil. J Arid Environ 67:357–372CrossRefGoogle Scholar
  21. El Finti A, Talibi D, Sedki M, Mousadik AE (2016) Genetic differentiation in Moroccan Opuntia ficus-indica cultivars using simple sequence repeat (SSR) markers. Not Sci Biol 8:380–385CrossRefGoogle Scholar
  22. El Kharrassi Y, Mazri MA, Mabrouk A et al (2015) Flowering and fruiting phenology, and physico-chemical characteristics of 2-year-old plants of six species of Opuntia from eight regions of Morocco. J Hort Sci Biotechnol 90:682–688CrossRefGoogle Scholar
  23. El Kharrassi Y, Mazri MA, Benyahia H et al (2016) Fruit and juice characteristics of 30 accessions of two cactus pear species (Opuntia ficus indica and Opuntia megacantha) from different regions of Morocco. LWT Food Sci Technol 65:610–617CrossRefGoogle Scholar
  24. El Kharrassi Y, Mazri MA, Sedra MH et al (2017) Characterization of genetic diversity of cactus species (Opuntia spp.) in Morocco by morphological traits and molecular markers. Curr Agric Res J 5:146–159Google Scholar
  25. El Kharrassi Y, Maata N, Mazri MA et al (2018) Chemical and phytochemical characterizations of argan oil (Argania spinosa L. skeels), olive oil (Olea europaea L. cv. Moroccan picholine), cactus pear (Opuntia megacantha salm-dyck) seed oil and cactus cladode essential oil. J Food Meas Char 12:747–754Google Scholar
  26. Estrada-Luna AA, López-Peralta C, Cárdenas-Soriano E (2002) In vitro micrografting and the histology of graft union formation of selected species of prickly pear cactus (Opuntia spp.). Sci Hort 92:317–327CrossRefGoogle Scholar
  27. Felker P, Zapata R, Wang X et al (2010) Fruit characters among apomicts and sexual progeny of a cross of the Texas native Opuntia lindheimeri (1250) with a commercial fruit type Opuntia ficus-indica (1281). J Prof Ass Cactus Dev 12:48–66Google Scholar
  28. Flores-Valdés C, Olvera M (1996) La producción de nopal verdura en México. In: Memorias del 6to. congreso nacional y 4to. congreso internacional sobre el conocimiento y aprovechamiento del nopal. Jalisco, MexicoGoogle Scholar
  29. Ganopoulos I, Kalivas A, Kavroulakis N et al (2015) Genetic diversity of Barbary fig (Opuntia ficus-indica) collection in Greece with ISSR molecular markers. Plant Gene 2:29–33CrossRefGoogle Scholar
  30. Gill RW, Sanseau P (2000) Rapid in silico cloning of genes using expressed sequence tags (ESTs). Biotechnol Ann Rev 5:25–44CrossRefGoogle Scholar
  31. Glimn-Lacy J, Kaufman PB (2006) Botany illustrated: introduction to plants, major groups, flowering plant families. Springer, New YorkGoogle Scholar
  32. Gomes FLAF, Heredia FF, Silva PB et al (2006) Somatic embryogenesis and plant regeneration in Opuntia ficus-indica (L.) Mill. (Cactaceae). Sci Hort 108:15–21CrossRefGoogle Scholar
  33. Grant V, Grant KA (1982) Natural pentaploids in the Opuntia lindheimeri-phaeacantha group in Texas. Bot Gaz 143:117–120CrossRefGoogle Scholar
  34. Griffith MP (2001) Experimental hybridization in northern Chihuahuan desert region Opuntia (Cactaceae). Aliso 20:37–42CrossRefGoogle Scholar
  35. Griffith MP (2004) The origins of an important cactus crop, Opuntia ficus-indica (Cactaceae): new molecular evidence. Am J Bot 91:1915–1921CrossRefPubMedGoogle Scholar
  36. Gulfishan M, Bhat TA, Oves M (2015) Mutants as a genetic resource for future crop improvement. In: Al-Khayri JM, Jain SM, Johnson DV (eds) Advances in plant breeding strategies: breeding, biotechnology and molecular tools, vol 1. Springer, Switzerland, pp 95–112CrossRefGoogle Scholar
  37. Hoffman W (1995) Ethnobotany. In: Barbera G, Inglese P, Pimienta BE (eds) Agroecology, cultivation and uses of cactus pear. FAO, Rome, pp 12–19Google Scholar
  38. Jedidi E, Mahmoud KB, Kaaniche-Elloumi N, Jemmali A (2015) SEM and histological analysis of somatic embryogenesis performed on cactus pear (Opuntia ficus-indica (L.) Mill.) ovules explants. Acta Hort 1067:231–237CrossRefGoogle Scholar
  39. Jiménez-Aguilar DM, Mújica-Paz H, Welti-Chanes J (2014) Phytochemical characterization of prickly pear (Opuntia spp.) and of its nutritional and functional properties: a review. Curr Nutr Food Sci 10:57–69CrossRefGoogle Scholar
  40. Jiménez-Aguilar DM, López-Martínez JM, Hernández-Brenes C et al (2015) Dietary fiber, phytochemical composition and antioxidant activity of Mexican commercial varieties of cactus pear. J Food Comp Anal 41:66–73CrossRefGoogle Scholar
  41. Khalafalla MM, Abdellatef E, Ahmed MMM, Osman MG (2007) Micropropagation of cactus (Opuntia ficus-indica) as strategic tool to combat desertification in arid and semiarid regions. Int J Sustain Crop Prod 2:1–8Google Scholar
  42. Kiesling R (1998) Origen, domesticación y distribución de Opuntia ficus-indica. J Prof Ass Cactus Dev 3:50–59Google Scholar
  43. Krishna G, Singh BK, Kim EK et al (2015) Progress in genetic engineering of peanut (Arachis hypogaea L.)—a review. Plant Biotechnol J 13:147–162CrossRefPubMedGoogle Scholar
  44. Kuti JO (2004) Antioxidant compounds from four Opuntia cactus pear fruit varieties. Food Chem 85:527–533CrossRefGoogle Scholar
  45. Labra M, Grassi F, Bardini M et al (2003) Genetic relationships in Opuntia Mill. genus (Cactaceae) detected by molecular marker. Plant Sci 165:1129–1136CrossRefGoogle Scholar
  46. Las Casas G, Distefano G, Caruso M et al (2017) Relationships among cultivated Opuntia ficus-indica genotypes and related species assessed by cytoplasmic markers. Genet Res Crop Evol.  https://doi.org/10.1007/s10722-017-0569-2CrossRefGoogle Scholar
  47. Llamoca-Zárate RM, Campos FAP, Landsman J (1998) Establishment and transformation of callus and cell suspension cultures of the prickly-pear (Opuntia ficus indica). J Prof Ass Cactus Dev 3:27–33Google Scholar
  48. Llamoca-Zárate RM, Ponte LFA, Landsmann J, Campos FAP (1999) Biolistic-mediated transient gene expression in shoot apical meristems of the prickly-pear (Opuntia ficus-indica). Braz Arch Biol Technol 42:299–302CrossRefGoogle Scholar
  49. Llamoca-Zárate RM, Landsman J, Campos FAP (2006) Isolation and culture of protoplasts from cell suspensions of cactus pear (Opuntia ficus-indica Mill.). Acta Hort 728:93–96CrossRefGoogle Scholar
  50. Majure LC, Judd WS, Soltis PS, Soltis DE (2012) Cytogeography of the Humifusa clade of Opuntia s.s. Mill. 1754 (Cactaceae, Opuntioideae, Opuntieae): correlations with Pleistocene refugia and morphological traits in a polyploid complex. Comp Cytogenet 6:53–77CrossRefPubMedPubMedCentralGoogle Scholar
  51. Mallona I, Egea-Cortines M, Weiss J (2011) Conserved and divergent rhythms of crassulacean acid metabolism-related and core clock gene expression in the cactus Opuntia ficus-indica. Plant Phys 156:1978–1989CrossRefGoogle Scholar
  52. Mazri MA, Meziani R (2015) Micropropagation of date palm: a review. Cell Dev Biol 4(3):160Google Scholar
  53. Mazri MA, Belkoura I, Pliego-Alfaro F, Belkoura M (2013) Somatic embryogenesis from leaf and petiole explants of the Moroccan olive cultivar Dahbia. Sci Hort 159:88–95CrossRefGoogle Scholar
  54. Mazri MA, Belkoura I, Meziani R et al (2017) Somatic embryogenesis from bud and leaf explants of date palm (Phoenix dactylifera L.) cv. Najda. 3. Biotech 7:58Google Scholar
  55. McLeod MG (1975) A new hybrid freshly fruited prickly pear in California. Madroño 23:96–98Google Scholar
  56. Medina EMD, Rodríguez EMR, Romero CD (2007) Chemical characterization of Opuntia dillenii and Opuntia ficus indica fruits. Food Chem 103:38–45CrossRefGoogle Scholar
  57. Mohamed-Yasseen Y, Barringer SA, Splittstoesser WE (1996) A note on the uses of Opuntia spp. in Central/North America. J Arid Environ 32:347–353CrossRefGoogle Scholar
  58. Mondragón-Jacobo C (2001a) Verification of the apomictic origin of cactus pear (Opuntia spp. Cactaceae) seedlings of open pollinated and crosses from central Mexico. J Prof Ass Cactus Dev 4:49–56Google Scholar
  59. Mondragón-Jacobo C (2001b) Cactus pear domestication and breeding. In: Janick J (ed) Plant breeding previews, vol 20. Wiley, New York, pp 135–166Google Scholar
  60. Mondragón-Jacobo C, Bordelon BB (1996) Cactus pear (Opuntia ssp. Cactaceae) breeding for fruit production. J Prof Ass Cactus Dev 1:19–35Google Scholar
  61. Mondragón-Jacobo C, Pérez-Gonzalez S (2001) Germplasm resources and breeding Opuntia for fodder production. In: Mondragón-Jacobo C, Pérez-Gonzalez S (eds) Cactus (Opuntia spp.) as forage. FAO, Rome, pp 21–28Google Scholar
  62. Mondragón-Jacobo C, Pimienta-Barrios E (1995) Propagation. In: Barbera G, Inglese P, Pimienta-Barrios E (eds) Agro-ecology, cultivation and uses of cactus pear. FAO, Rome, pp 64–70Google Scholar
  63. Mondragón-Jacobo C, Méndez-Gallegos SJ, Olmos-Oropeza G (2001) Cultivation of Opuntia for fodder production: from re-vegetation to hydroponics. In: Mondragón-Jacobo C, Pérez-Gonzalez S (eds) Cactus (Opuntia spp.) as forage. FAO, Rome, pp 107–122Google Scholar
  64. Mulas M, Spano D, Pellizaro G, D’hallewin G (1992) Rooting of Opuntia ficus-indica Mill. young cladodes. Adv Hort Sci 6:44–46Google Scholar
  65. Nefzaoui A, Louhaichi M, Ben Salem H (2014) Cactus as a tool to mitigate drought and to combat desertification. J Arid Land Stud 24:121–124Google Scholar
  66. Nobel PS (1994) Remarkable agaves and cacti. Oxford University Press, New YorkGoogle Scholar
  67. Nobel PS (2001) Ecophysiology of Opuntia ficus-indica. In: Mondragón-Jacobo C, Pérez-Gonzalez S (eds) Cactus (Opuntia spp.) as forage. FAO, Rome, pp 13–20Google Scholar
  68. Ochoa-Alfaro AE, Rodríguez-Kessler M, Peréz-Morales MB et al (2012) Functional characterization of an acidic SK3 dehydrin isolated from an Opuntia streptacantha cDNA library. Planta 235:565–578CrossRefPubMedGoogle Scholar
  69. Owen NA, Fahy KF, Griffiths H (2016) Crassulacean acid metabolism (CAM) offers sustainable bioenergy production and resilience to climate change. GCB Bioenergy 8:737–749CrossRefGoogle Scholar
  70. Paiva PMG, de Souza IFAC, Costa MCVV et al (2016) Opuntia sp. cactus: biological characteristics, cultivation and applications. Adv Res 7:1–14CrossRefGoogle Scholar
  71. Pimienta-Barrios E (1990) El nopal tunero. Universidad de Guadalajara, Guadalajara, MexicoGoogle Scholar
  72. Pinkava DJ, Mcleod MG (1971) Chromosome numbers in some cacti of western North America. Britt 23:171–176CrossRefGoogle Scholar
  73. Polley HW, Bailey DW, Nowak RS, Stafford-Smith M (2017) Ecological consequences of climate change on rangelands. In: Briske DD (ed) Rangeland systems. Springer, Cham, pp 229–260CrossRefGoogle Scholar
  74. Potgieter J, D’Aquino S (2017) Fruit production and post-harvest management. In: Inglese P, Mondragon C, Nefzaoui A, Sáenz C (eds) Crop ecology, cultivation and uses of cactus pear. FAO-ICARDA, Rome, pp 51–72Google Scholar
  75. Potgieter J, Mashope BK (2009) Cactus pear (Opuntia spp.) germplasm conservation in South Africa. Acta Hort 811:47–54CrossRefGoogle Scholar
  76. Ramadan MF, Mörsel JT (2003) Oil cactus pear (Opuntia ficus-indica L.). Food Chem 82:339–345CrossRefGoogle Scholar
  77. Realini MF, González GE, Font F et al (2015) Phylogenetic relationships in Opuntia (Cactaceae, Opuntioideae) from southern South America. Plant Syst Evol 301:1123–1134CrossRefGoogle Scholar
  78. Reyes-Agüero JA, Aguirre-Rivera JR, Flores-Flores JL (2005) Variación morfológica de Opuntia (Cactaceae) en relación con su domesticación en la altiplanicie meridional de México. Intercien 30:476–484Google Scholar
  79. Robles-Martínez M, Barba-de la Rosa AP, Guéraud F et al (2016) Establishment of callus and cell suspensions of wild and domesticated Opuntia species: study on their potential as a source of metabolite production. Plant Cell Tiss Organ Cult 124:181–189CrossRefGoogle Scholar
  80. Rodriguez-Felix A (2002) Postharvest physiology and technology of cactus pear fruits and cactus leaves. Acta Hort 581:191–199CrossRefGoogle Scholar
  81. Romano G (2013) Colección de Opuntia en El National Arid Land Plant Genetic Resources Unit. In: Nazareno MA, Ochoa MJ, Dubeaux JC (eds) Cactusnet Newsletter, special issue 13. Proceedings of the 2nd meeting for the integral use of cactus pear and other cacti and 1st South American meeting of the FAO-ICARDA CACTUSNET, FAO, Santiago del Estero, Sept 2012, pp 19–27Google Scholar
  82. Rosas-Cárdenas FF, Valderrama-Cháirez ML, Cruz-Hernández A, Paredes-López O (2007) Prickly pear polygalacturonase gene: cDNA cloning and transcript accumulation during ethylene treatment, cold storage and wounding. Postharv Biol Technol 44:254–259CrossRefGoogle Scholar
  83. Rosiles-Ortega AF, Durán-Castro E, Rodríguez-Robelo MC (2015) Biotecnología farmacéutica: fusión de protoplastos de dos especies de nopal de la ciudad de Guanajuato. Joven Ciencia 2:663–667Google Scholar
  84. Russell CE, Felker P (1987) The prickly-pears (Opuntia spp., Cactaceae): a source of human and animal food in semiarid regions. Econ Bot 41:433–445CrossRefGoogle Scholar
  85. Sáenz C (2013a) Opuntias as a natural resource. Agro-industrial utilization of cactus pear. FAO-CACTUSNET, Rome, pp 1–5Google Scholar
  86. Sáenz C (2013b) Industrial production of non-food products. Agro-industrial utilization of cactus pear. FAO-CACTUSNET, Rome, pp 89–101Google Scholar
  87. Salas-Muñoz S, Gómez-Anduro G, Delgado-Sánchez P et al (2012) The Opuntia streptacantha OpsHSP18 gene confers salt and osmotic stress tolerance in Arabidopsis thaliana. Int J Mol Sci 13:10154–10175CrossRefPubMedPubMedCentralGoogle Scholar
  88. Samah S, Valadez-Moctezuma E (2014) Morphological seeds descriptors for characterize and differentiate genotypes of Opuntia (Cactaceae, Opuntioideae). Ann Res Rev Biol 4:3791–3809CrossRefGoogle Scholar
  89. Samah S, Ventura-Zapata E, Valadez Moctezuma E (2015) Fractionation and electrophoretic patterns of seed protein of Opuntia genus. A preliminary survey as a tool for accession differentiation and taxonomy. Biochem Syst Ecol 58:187–194CrossRefGoogle Scholar
  90. Samah S, Valadez-Moctezuma E, Peláez-Luna KS et al (2016a) Genetic divergence between Mexican Opuntia accessions inferred by polymerase chain reaction-restriction fragment length polymorphism analysis. Genet Mol Res 15:gmr.15027786Google Scholar
  91. Samah S, De Teodoro Pardo CV, Serrato Cruz MA, Valadez Moctezuma E (2016b) Genetic diversity, genotype discrimination, and population structure of Mexican Opuntia sp., determined by SSR markers. Plant Mol Biol Rep 34:146–159CrossRefGoogle Scholar
  92. Segura S, Scheinvar L, Olalde G et al (2007) Genome sizes and ploidy levels in Mexican cactus pear species Opuntia (Tourn.) Mill. Series Streptacanthae Britton et Rose, Leucotrichae DC, Heliabravoanae Scheinvar and Robustae Britton et Rose. Genet Res Crop Evol 54:1033–1041CrossRefGoogle Scholar
  93. Shedbalkar UU, Adki VS, Jadhav JP, Bapat VA (2010) Opuntia and other cacti: applications and biotechnological insights. Trop Plant Biol 3:136–150CrossRefGoogle Scholar
  94. Shetty AA, Rana MK, Preetham SP (2012) Cactus: a medicinal food. J Food Sci Technol 49:530–536CrossRefPubMedGoogle Scholar
  95. Silos-Espino H, Valdez-Ortiz A, Rascon-Cruz Q et al (2006) Genetic transformation of prickly-pear cactus (Opuntia ficus-indica) by Agrobacterium tumefaciens. Plant Cell Tissue Organ Cult 86:397–403CrossRefGoogle Scholar
  96. Silva-Ortega CO, Ochoa-Alfaro AE, Reyes-Agüero JA et al (2008) Salt stress increases the expression of p5cs gene and induces proline accumulation in cactus pear. Plant Phys Biochem 46:82–92CrossRefGoogle Scholar
  97. Singh RS, Singh V (2003) Growth and development influenced by size, age, and planting methods of cladodes in cactus pear (Opuntia ficus-indica (L.) Mill.). J Prof Ass Cactus Dev 5:47–54Google Scholar
  98. Sink KC, Jain RK, Chowdhury JB (1992) Somatic cell hybridization. In: Kalloo G, Chowdhury JB (eds) Distant hybridization of crop plants. Springer-Verlag, Berlin, pp 168–198CrossRefGoogle Scholar
  99. Srikanth K, Whang SS (2015) Phylogeny of Korean Opuntia spp. based on multiple DNA regions. Turk J Bot 39:635–641CrossRefGoogle Scholar
  100. Tesoriere L, Fazzari M, Allegra M, Livrea MA (2005) Biothiols, taurine, and lipid-soluble antioxidants in the edible pulp of Sicilian cactus pear (Opuntia ficus-indica) fruits and changes of bioactive juice components upon industrial processing. J Agric Food Chem 53:7851–7855CrossRefPubMedGoogle Scholar
  101. Timpanaro G, Foti VT (2014) The structural characteristics, economic performance and prospects for the Italian cactus pear industry. J Prof Ass Cactus Dev 16:32–50Google Scholar
  102. Tütüncü M, Şimşek Ö, Kaçar YA, Küden AB (2016) Molecular characterization of Turkish cactus pear (Opuntia spp.) by RAPD markers. J Prof Ass Cactus Dev 18:65–77Google Scholar
  103. Valadez-Moctezuma E, Samah S, Luna-Paez A (2015) Genetic diversity of Opuntia spp. varieties assessed by classical marker tools (RAPD and ISSR). Plant Syst Evol 301:737–747CrossRefGoogle Scholar
  104. Vazquez-Mendoza P, Miranda-Romero LA, Aranda-Osorio G et al (2017) Evaluation of eleven Mexican cultivars of prickly pear cactus trees for possibly utilization as animal fed: in vitro gas production. Agrofor Syst 91:749–756CrossRefGoogle Scholar
  105. Wang X, Felker P, Paterson A et al (1996) Cross-hybridization and seed germination in Opuntia species. J Prof Ass Cactus Dev 1:49–60Google Scholar
  106. Wang X, Felker P, Paterson A (1997) Environmental influences on cactus pear fruit yield, quality and cold hardiness and development of hybrids with improved cold hardiness. J Prof Ass Cactus Dev 2:48–59Google Scholar
  107. Yahia EM, Sáenz C (2017) Cactus pear fruit and cladodes. In: Yahia EM (ed) Fruit and vegetable phytochemicals: chemistry and human health, 2nd edn. Wiley, Chichester, pp 941–956CrossRefGoogle Scholar
  108. Zarroug MB, Hannachi AS, Souid S et al (2015a) Molecular research on the genetic diversity of cactus (Opuntia spp) using the SSR method. Acta Hort 1067:53–58CrossRefGoogle Scholar
  109. Zarroug MB, Baraket G, Zourgui L et al (2015b) Genetic diversity and phylogenetic relationship among Tunisian cactus species (Opuntia) as revealed by random amplified microsatellite polymorphism markers. Genet Mol Res 14:1423–1433CrossRefGoogle Scholar
  110. Zhang JM, Xin X, Yin GK et al (2014) In vitro conservation and cryopreservation in National Genebank of China. Acta Hort 1039:309–317CrossRefGoogle Scholar
  111. Zimmermann HG, Moran VC (1991) Biological control of prickly pear, Opuntia ficus-indica (Cactaceae), in South Africa. Agr Ecosys Environ 37:29–35CrossRefGoogle Scholar
  112. Zoghlami N, Bouamama B, Khammassi M, Ghorbel A (2012) Genetic stability of long-term micropropagated Opuntia ficus-indica (L.) Mill. plantlets as assessed by molecular tools: perspectives for in vitro conservation. Ind Crops Prod 36:59–64CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institut National de la Recherche Agronomique, CRRA de Marrakech, UR Agro-BiotechnologieMarrakechMorocco

Personalised recommendations